
Developing adaptive web courses based on simulation: A thick client
approach

Manuel Alfonseca, Juan de Lara, Alfonso Ortega1

Dept. Ingeniería Informática, Universidad Autónoma de Madrid
Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

e-mail: {Manuel.Alfonseca, Juan.Lara, Alfonso.Ortega}@ii.uam.es

1 In alphabetical order

Abstract
In this paper we present some extensions that we have
added to our tools to develop adaptive simulation based
web courses. The tools allow the construction of web
documents enriched with visual interactive simulations
and other hypermedia elements. For this purpose, we use
a continuous simulation language (OOCSMP) that is
composed of several abstraction layers: the first describes
the simulation models’ behaviour; the second describes
pages or slides; and the third builds courses, articles or
presentations. The new extensions allow including
different texts, images and simulations depending on the
user characteristics. The compiler for the OOCSMP
language (named C-OOL) generates HTML pages
prepared to run entirely on the client, using technologies
such as Java, JavaScript and cookies.

Keywords
Web-based simulation, Web-based applications, Distance
learning, Automatic code generation, Adaptive courses.

Acknowledgement
This paper has been sponsored by the Spanish
Interdepartmental Commission of Science and
Technology (CICYT), project number TEL1999-0181.

1. Introduction
The web is changing the way we work. In fact, more and
more frequently, we see educational courses, articles, and
presentations when navigating in the web. These
publications sometimes can be accessed on-line,
sometimes must be downloaded. On-line documents run
from a simple transposition of lecture notes, to pages
including more sophisticated elements, such as animated
graphics, simulations and so forth.

The Internet is accessed by millions of people, with very
different characteristics, knowledge and preferences. This
means that it would be good for Internet-published
materials to be adpative in the sense that different people
would see different views. In some sense, this is already
done in the best commercial web pages, such as Amazon
(Amazon, 2000).

In the case of educational materials, this need is even

greater. There are many levels of students, depending on
their previous experience, their interests, or their
capabilities, both on the subject matter objective of the
course, and on the use of computers. The best courses
would consist of different study trajectories, adapted both
to individual students and to the path they have followed
during their prior navigation through the course (de
Bra99). A few existent course writing systems already
provide some of these opportunities (Carro et al 1999,
Brusilovsky et al 1998, Weber and Specht 1997, de Bra et
al 1998).

Our approach is somewhat different, in the sense that our
courses are based on thick-client technologies, such as
Java, Javascript or cookies. Using these tools, the student
can select information adapted to a certin level, but can
also access other pages, paragraphs or views that would
correspond to a different level, which would make the
course more flexible and allow dynamic changes in
perspective which usually are not possible with other
courses.

This article is organized as follows: section 2 presents the
system we use to develop documents for the web
containing interactive simulations, section 3 describes the
extensions that we have added to the system to produce
adaptive web courses, section 4 shows an example and
section 5 expounds the conclusions and the future work.

2. OOCSMP, SODA-1L, SODA-2L, an
overview.
The OOCSMP continuous simulation language was
conceived in 1997 (Alfonseca et al 1997) as an object
oriented language. A compiler (C-OOL) was built for this
language in order to produce C++ code or Java applets
from the simulation models. This approach would
simplify the generation of simulation based web courses.
In fact, several of them have been generated using this
language (for gravitation, partial differential equations,
ecology and basic electronics) which can be accessed
from:

http://www.ii.uam.es/~jlara/investigacion

The language and the compiler have been designed with
an educational focus, with the following features:

n It is possible to include several forms of output
displays in the same simulation.

n The user interface can modify parameters, object
attributes or even add or delete objects during the
simulation execution. This gives the student more
interaction possibilities.

n The user interface can be configured by means of
compiler options. For example, if we are going to
present a simulation to a naive user, we will restrict
the interface to prevent the user to change model
parameters. On the contrary, if the user is an expert,
we will provide more possibilities to change the
model, such as buttons to add or delete simulation
objects.

n Alternative simulations can be designed, to be
accessed from the main simulation. In this way, the
teacher can plan interesting situations that arise when
a parameter is changed, an object is added, etc.

n Multimedia elements (video, dynamic text, sound or
virtual reality) may be included and synchronised
with the simulation execution. Thus, model
behaviour explanations may be presented in the
appropriate moment.

Two higher level layers (de Lara and Alfonseca 2001)
allow describing the HTML pages of the document, and
grouping them to form educational courses, articles or
presentations.

The description of document pages is covered by a set of
instructions that we call SODA-1L (Simulation Course
Description Language 1st Level). This set of instructions
allow us to describe web documents containing
hypermedia elements that are not available in plain
HTML, such as simulations, two dimensional graphics for
functions, three dimensional graphics, and maps of
isosurfaces. SODA-1L forms a higher language
abstraction layer than OOCSMP, because the models
defined in OOCSMP can be treated as hypermedia
elements from the SODA-1L viewpoint.

The level called SODA-2L (Simulation Course
Description Language 2nd Level) can group several of the
SODA-1L pages to form a course, a presentation or an
article. SODA-2L has primitives to add navigation links
to the pages, headers, footnotes, create and place indexes,
etc. They can be ‘embedded’ in the resulting HTML
pages, or added as frames. In this level we usually add
interface details that are common to all the pages, which
makes the SODA-1L pages easy to reuse. A picture of the
three layers and their interrelations is shown in figure 1.

Figure 1: The three level scheme used to generate
simulation based documents.

3. Extensions to generate adaptive courses.
We have extended our system with instructions that
permit the adaptation of the document pages, depending
on the user type. For the moment, the new instructions
have been added in the SODA-1L and the SODA-2L
levels.

At the SODA-2L level, the course designer has to identify
the types of user that will access the document pages. The
syntax for this instruction is:

USER=“<user_type1>”(,<user_type2>”)*

This instruction is not obligatory, and it is not necessary
to include it if just one type of user is targeted. If the
instruction is included, an entry page is created
automatically for the document, that is constructed using
JavaScript. In this page, the user has to provide her name
and type. This information will be kept in the user’s
computer by means of cookies. If the system detects the
user has accessed the document before, it asks her
whether she wants to start again or continue from the last
page in her last visit.

In this entry page, the user is also presented a text
describing the different user types. In this way, she can
choose the most appropriate. The description of the user
types is accomplished by means of the SODA-2L
instruction:

USERDEFINITION= “description of user type-1
(in SODA-1L format)”,
(, “description of user type-n (in SODA-1L
format)”)*

During her access to the document, the user will be
presented the information designed for the type of user
she belongs to. But, at any moment, the user can access
the information for other user types. If the user access
frequently the information of other user types, she is
asked by the system if she wants to change her user type.
In this way she will be able to check the type of
information each type of user receives, and choose the

most appropriate. The number of times the user can
access information of other user types before she is
offered to change her user type can be configured by
means of the SODA-2L instruction:

USERCHANGE <n>, “<message>”

Where <message> is the message that is presented to the
user when she is offered to change the level. If this
instruction is not present, the user is not asked for change.

We think that allowing the user type to be changed is very
important, because the user may not know a priori which
user type she belongs to; or her characteristics may
change with time. User change is not permitted in
adaptive learning systems such as TANGOW (Carro et al.
1999).

At the SODA-1L level, the designer must describe the
HTML pages of the document. This level provides
instructions to add text, images, links, tables, simulations,
2D-graphics, 3D-graphics, maps of isosurfaces, etc. to the
page. All these instructions have been extended in such a
way, that now it is possible to express different
alternatives for the different users defined in the SODA-
2L level. For example, the instruction to add text to a
page now has the following syntax:

DESCRIPTION [USER=”<user_type>”], [<text
in SODA-1L format>]

(, [USER=”<user_type>”], [<text in SODA-1L
format>])*

In this way, for each paragraph in the text, it is possible to
include different texts depending on the user type. When
processing this instruction, the compiler generates a piece
of JavaScript code. This code will generate an HTML
table with two columns and one row, the column to the
right has the text of the corresponding user level. The left
column has a widget that allows the user to change her
level (and the associated text on the column to the right).
This widget is controlled by means of JavaScript
functions, that the compiler generates automatically.
Thus, with these extensions we provide adaptive
presentation and adaptive navigation.

If the previous instruction is inserted without the
[USER=”<user_type>”] parameter, the compiler
generates plain HTML code for the paragraph.

Other SODA-1L instructions, to include images,
simulations, etc., have a similar syntax structure. The case
of the simulations is especially interesting, because of the
possibility of changing a simulation depending on the
user type. For example, if the user is naive, we will
restrict her possibilities to change model variables by
generating fewer buttons in the user interface, perhaps we
will include multimedia elements in the simulation. On
the contrary, if the user is expert, we will make available
the possibility to change parameters, by generating more
buttons in the user interface, even buttons to add or delete

objects during the simulation execution (Alfonseca et al
1999a).

4. An example: A course on gravitation.
We have experimented with the adaptation capabilities of
our system using a course on gravitation we had
developed previously (Alfonseca et al 1999b). The course
has been enhanced with adaptation capabilities and with
one more page. The course consists of 7 pages:
n A simple description of Newton's Mechanics with

different solutions to the two-body problem (a free
fall following different orbits: a circle, an ellipse, a
parabola, a hyperbole and a straight line).

n A model of the solar system, as a practical example
of the n-body problem. For convenience, the solar
system is shown in two separate parts: the inner
system (from Mercury to Jupiter) and the outer
system (from Jupiter to Pluto), with different time
scales.

n The same model, using a Virtual Reality panel and a
2-D plot (this page is new). The user can click on the
3D planets, and a table is shown with planet’s data,
including its mass, diameter, distance to the sun, etc.

n A model of the Sun-Earth-Moon system. The time
and plot scales are adjusted to make the two orbits
distinguishable.

n The discovery of Neptune by John Couch Adams and
Urbane Jean-Joseph Le Verrier, indicating how this
discovery transformed an apparent failure of
Newton's Mechanics into an outstanding success. The
discovery is illustrated by a double simulation of
Uranus's orbit, in the presence and in the absence of
Neptune.

n A geo-stationary satellite which keeps its distance to
the Earth constant has been simulated using the same
model, changing only the values of the constants and
the instanced objects (members of the class Planet).
The effect of the Moon on the satellite's orbit is
illustrated by performing a double simulation in the
presence and in the absence of the Moon. To test the
second case, we only have to change the mass of the
Moon to zero.

n Finally, the last page leaves the student freedom to
experiment with the simulated solar system,
providing the ability to change the planet parameters
and the universal constants (the mass of the Sun or
the gravitational constant), to play at answering what-
if questions.

For this course, we consider two user types: expert and
naive. Listing 1 shows the SODA-2L script necessary to
build the course.

[1] INCLUDE "macros.csm"
[2] INCLUDE "styles.csm"
[3] COURSE "Universal Gravitation and Newton’s

Mechanics" BACKGROUND="WHITE"
[4] USER= ”Advanced”, “Naive”
[5] USERDEFINITION=”Select this \BOLD{user type}

if you have some notions about
\BOLD{Newton’s mechanics}”, “Select this
\BOLD{user type} if you don’t know anything

about \BOLD{Newton’s mechanics} or
simulation”

[6] FONT TITLE TYPE="Tahoma", SIZE="+4",
COLOR="BLUE"

[7] FONT TYPE="Arial,Helvetica", SIZE="+2"
[8] AUTHOR J.de Lara, M.Alfonseca, A. Ortega
[9] EMAIL Juan.Lara@ii.uam.es,

Manuel.Alfonseca@ii.uam.es,
Alfonso.Ortega@ii.uam.es

[10] WEBADDRESS http://www.ii.uam.es/~jlara,
http://www.ii.uam.es/~alfonsec,
http://www.ii.uam.es/~alfonso

[11] NAVIGATION [TABLE, 80]
[12] SIMULATIONS -noFrame -noScaleWindow -

noLeyenda -WIDTH= 500 -HEIGHT= 350
[13] PAGE "grav.csm" NAVIGATION [2]
[14] PAGE "igrav1.csm" NAVIGATION [1,3]
[15] PAGE “igrav2.csm” NAVIGATION [2,4]
[16] PAGE “igrav3.csm” NAVIGATION [3,5]
[17] PAGE “igrav4.csm” NAVIGATION [4,6]
[18] PAGE “igrav5.csm” NAVIGATION [5,7]
[19] PAGE “igrav6.csm” NAVIGATION [6]

Listing 1: A SODA-2L script used to compile the course.

The third line indicates that we are compiling a course,
alternatives are presentations and articles. The next line
(4) declares the user types, and line 5 describes these user
types. Lines 6 and 7 declare the font type to be used in all
the course pages. Lines 8 to 10 declare the authors’ data.
This data can be accessed naming variables AUTHOR,
EMAIL and WEBADDRESS, in page indexes and headers. In
this way, the indexes and headers become more general.
Line 11 defines the navigation links appearance, they will
be presented in a table filling 80% of the HTML page. It
is also possible to include them in the form of lists. Line
12 sets some options on the user interface that will apply
by default when compiling the simulation models. Lines
13 to 19 declare the course pages (SODA-1L files) and
the navigation between them: each page will have a link
to the next and to the previous. Declaring the navigation
in this way allows reusing the document pages in other
documents.

Examples of SODA-1L code can be found in (deLara and
Alfonseca 2001). In our example, the page should include
a simulation model (programmed in OOCSMP), that
changes depending on the user type. If the user is inexpert
the model will have a dynamic text explaining what
happens in the simulation. This text is synchronised with
the simulation execution.

The OOCSMP model presents several interesting
situations that occur in the 2-body problem. Depending on
the initial conditions of the problem, we can simulate a
free fall following different orbits: a circle, an ellipse, a
parabola, a hyperbole and a straight line. These
alternatives are accessible from the same simulation
program. The OOCSMP code necessary for this problem
(for the advanced user) is shown in listing 2.

[1] TITLE GRAVITATION
[2] DATA G:=0.00011869, PI:=3.141592653589793,

MS:=332999
[3] INCLUDE "Planet.csm"
[4] Planet Earth("Earth",1,0,1,-6.29,0.107, 0)

[5] DYNAMIC
[6] Earth.STEP()
[7] TIMER delta:=.0005,FINTIM:=2,PLdelta:=.01
[8] METHOD ADAMS
[9] \
[10] TITLE ELLIPSE
[11] TIMER FINTIM:=100, PLdelta:=.05
[12] DATA Earth.XP0:=-8.5
[13] PLOT 3.2, 2.5, -4.5, -11
[14] \
[15] TITLE ELLIPSE
[16] TIMER FINTIM:=140, PLdelta:=.3
[17] DATA Earth.XP0:=-8.8
[18] PLOT 8.0 , 2.5, -8.7 , -57.31
[19] \
[20] TITLE PARABOLE
[21] TIMER FINTIM:=75, PLdelta:=.1
[22] DATA Earth.XP0:=-8.9
[23] PLOT 2.5 , 2.5, -26.0, -120.0
[24] \
[25] TITLE HYPERBOLE
[26] TIMER FINTIM:=75, PLdelta:=.1
[27] DATA Earth.XP0:=-9
[28] PLOT 2.5 , 2.5, -57.0, -140.0
[29] \
[30] TITLE FREE FALL
[31] TIMER PLdelta:=.001
[32] DATA Earth.XP0:=0
[33] PLOT 0.5 , 1.5, -0.5 , -0.5

Listing 2: OOCSMP code for the 2-body problem (file
grav00.csm).

The first line declares the model’s title. Line 2 declares
some constants. Line 3 includes an OOCSMP file that
contains an OOCSMP class named Planet. This class
encapsulates all the behaviour of a Planet. More details
about this can be found at (Alfonseca et al 1999b). Line 4
declares an object that represents one of the bodies, the
second one is supposed to be at the origin of coordinates.
Lines 5 and 6 are the main simulation loop that just
invokes a method on the object. Line 7 and 8 declare
some simulation parameters. At line 9 begins the
declaration of the different simulation alternatives. Each
‘\’ begins the declaration of a variation in the main
problem. In our case, the variations consist in changing
the initial position of the first body, the scale of the
graphic and some simulation parameters. These
instructions will generate a button each. When the user
clicks on the button, the execution of the corresponding
variation of the main model will start.

The model for the inexpert user is almost the same, but
we have added an explanation to each situation.
Information about embedding and synchronising
multimedia inside simulations can be found in (Alfonseca
and de Lara 2000).

Figures 2 and 3 show a piece of this page for both user
types. On the left side of both simulation applets, it can be
seen the buttons to change between the different model
variations. At the bottom of the applet, there are some
buttons to control the simulation execution. Note that the
advanced user interface has two mor buttons: the one
labeled with ‘Earth’ is used to change the attributes of the
body that orbites, and the labeled with ‘Globals’ to
change global variables such as the mass of the immobile

body, the universal gravitation constant, etc. In this way,
the advanced user can also choose to design her own
experiments (restricted to the equations of the model), and
has more possibilities of interaction. On the other hand,
the simulations of the naive user are more guided, and
textual explanations are given below the graphic, the
explanations change depending on the variation of the
model that is being executed. In the example, the user has
clicked on the botton labeled as ‘1’, the ‘Ellipse’
experiment.

Figure 2: The page for the naive user

Figure 3: The page for the advanced user

5. Conclusions.
This paper has presented some tools that make easy the
construction of adaptive web courses based on
simulations. Our approach uses thick-client computation,
that reduces the need of an expensive server. We think
this is a good approach, because of the large number of
users that can access potentially to the course at the same

time, and the growing capacity of the personal computers
nowadays.

The three-layer language used to integrate interactive
simulations with the construction of web documents puts
stress on several key points in the development of web
based applications, such as maintainability, reusability (of
pages, headers, footnotes, simulation models, etc), easy
testing, common look, etc. In the future we expect to test
the system with real students and to obtain feedback from
them. Other useful elements can also be added to this
system, such as the possibility of proposing exercices to
the student, or to indicate her that path that has followed
and the remaining pages to complete a lesson, etc.

7. References
Alfonseca, M., Pulido, E., Orosco, R., de Lara, J. 1997.

"OOCSMP: an object-oriented simulation language".
ESS'97, Passau, pp. 44-48.

Alfonseca, M., de Lara, J., Pulido, E. 1999. "Dynamical object
generation during the execution of continuous simulation
models". Proc. ASOO'99, Third Argentine symposium on
Object Orientation, Buenos Aires, pp. 89-102.

Alfonseca, M., de Lara, J., Pulido, E. 1999. "Semiautomatic
Generation of Web Courses by Means of an Object-Oriented
Simulation Language", special issue of "SIMULATION",
Web-Based Simulation, Vol 73, num.1, July 1999, pp. 5-12.

Alfonseca, M., de Lara, J. 2000. "Integration of Simulation and
Multimedia in Automatically Generated Internet Courses".
Computers and education in the 21st Century. (Ortega, M.
and Bravo, J. eds.). Kluwer Academic Publishers. pp. 47-54.

Amazon web page: http://www.amazon.com

Brusilovsky, P., Eklund, J., and Schwarz, E. 1998. “Web-based
education for all: A tool for developing adaptive
courseware”. Computer Networks and ISDN Systems, 30
(1-7), 291-300.

Carro, R.M., Pulido, E., Rodríguez, P. 1999. "Designing
Adaptive Web-based Courses with TANGOW". In Advanced
Research in Computers and Communications in Education.
Eds: Cumming, G., Okamoto, T., Gómez, L. Vol 2, pp. 697-
704. IOS Press. Amsterdam.

De Bra, P., Calvi, L. 1998. “Towards a Generic Adaptive
Hypermedia System”. Proceedings of the Second Workshop
on Adaptive Hypertext and Hypermedia, pp. 5-11.

De Bra, P. 1999. “Design Issues in Adaptive Hypermedia
Application Development”. pp.: 29-39. 8th International
Word Wide Web Conference. Toronto. In Internet at:
http://wwwis.win.tue.nl/asum99/debra/debra.html

de Lara, J., Alfonseca, M. “Towards and authoring tool for the
construction of simulation based web courses”. IEEE
Multimedia, special issue on Web engineering. January-
March. 2001. pp 42-49

Weber, G. & Specht, M. (1997). “User modeling and adaptive
navigation support in WWW-based tutoring systems”.
Proceedings of User Modeling '97 (pp.289-300).

