
Teaching Partial Differential Equations through the Internet: an
interactive approach

Manuel Alfonseca, Juan de Lara, Germán Montoro1

Dept. Ingeniería Informática, Universidad Autónoma de Madrid
Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

e-mail: {Manuel.Alfonseca, Juan.Lara, German.Montoro}@ii.uam.es

1 In alphabetical order

KEYWORDS

Web based simulation, Distance learning, Partial
differential equations, OOCSMP.

ABSTRACT

This paper presents the procedures, tools and techniques
that we use to teach partial differential equations through
Internet. This is accomplished by means of an object
oriented continuous simulation language called OOCSMP,
a compiler (C-OOL) that is able to generate Java applets,
and a tool (MGEN) that allows the student to interact with
the problem, design the geometry, discretize it, declare
equations, conditions, etc. Different interaction levels can
be set by the teacher, allowing the student to change only
some aspects of the problem definition.

1. INTRODUCTION

The growing popularity of Internet, and the increasing
number of computers connected to it, makes it an ideal
framework for remote education. Not only educational
sciences, but also a large number of disciplines are re-
thinking their traditional philosophies and techniques to
adapt to the new technologies (Page et al. 2000). One of
these disciplines is computer simulation.

Higher education tends to move from a teacher-centred
paradigm to a student-centred paradigm (Maly et al. 1998).
In this paradigm, the student plays a more active role in the
learning activity. Web-based simulation is an effective
framework for such a learning, that simplifies theory
understanding, encourages 'learning by discovery' and
experimentation and undoubtedly makes the learning
process more pleasant. Web based learning using
simulations is a good complement and reinforcement to
traditional laboratory teaching; in the sense that students
can experiment at any time at home.

There is also a change of mentality in students, they are
ever more familiar with browsing the Web, playing
computer games and interpreting graphics. Such students,
in order to use simulation, desire tools that allow quick,
easy and visual experimentation (Page et al. 1999). This
visual interactive simulation paradigm (Campos and Hill,
1998) can result in some dangers, such as uncontrolled
parameter changes by the users, which would invalidate the
simulation results. Part of the solution could come from

providing decision support means, such as the integration of
quantitative simulators with qualitative models to provide
guidance and explanations (Bredeweg and Winkels 1998),
some kind of tutoring system, or simply the presentation of
typical problem situations and the restriction of parameter
changes and values. Another problem is that web published
simulation models are made available to a mass of
untrained users with a great possibility of misuse (Page and
Opper, 1999).

There is a need for adequate tools to help in the elaboration
of courses, which should make it possible to express all the
possibilities offered by WWW teaching. As an answer to
this necessity, we provide a set of tools to ease the
development of technical or scientific educational courses
through Internet. The courses would be composed of
HTML pages and interactive on-line simulations, which
help the student to understand the course subject.

The tools we have built integrate with each other easily and
result in a very straightforward use. In particular, in this
paper we present a tool (MGEN) designed to be used when
the course deals with partial differential equations (PDEs).
The tool promotes the student interaction with the problem,
making it possible to design or change the problem
geometry, discretize it, set the initial and boundary
conditions, define the equation to be solved, etc. The
teacher can also restrict the interaction freedom and make
suggestions to the student.

This paper is organised as follows: section two presents the
tools we use to generate web courses (OOCSMP, SODA
and C-OOL); section three presents MGEN; in section four
we show an example of use; and finally, in section five we
discuss the conclusions and the future work.

2. GENERATING WEB BASED DOCUMENTS:
OOCSMP, SODA AND C-OOL.

The simulations presented to the students are programmed
in our own continuous simulation language called
OOCSMP (OOCSMP, 2002) which was born in 1997
(Alfonseca et al. 1997) as an object oriented extension to
the old CSMP (IBM, 1972) continuous simulation
language, sponsored by IBM in the 70's and 80's. The
language was conceived with an educational focus in mind,
in such a way that it has been mostly used to generate
courses based on simulation (Alfonseca et al. 1999),

accessible from the Internet. The language has also been
extended in other ways such as: handling discrete events,
solving second order PDEs, generating distributed
simulations, synchronising multimedia elements with the
simulation execution, etc.

A compiler (C-OOL, a Compiler for the OOCSMP
Language) has been built to compile OOCSMP models and
generate three different object languages and environments:
C++, C++/Amulet and Java.

The compiler generates automatically user interfaces for the
three cases, and they can be configured by means of
compiler options. The interfaces allow the user to
experiment with problem and answer "what if...?"
questions. Our system fits in the Visual Interactive
Simulation paradigm (Campos and Hill, 1998), in which the
user can interact with the simulation results while they are
calculated, pause the simulation and change parameters,
etc. Figure 1 shows the working scheme of the system.

Figure 1: Working Scheme of C-OOL

The possibility of configuring the user interface allows us
to adapt the simulation to the target user:

n If we know that the user is naive, we will restrict the
possibility of making changes in the model.

n If the user is an expert, we will enhance the possibility
to modify model parameters.

The teacher can identify interesting or typical situations in
the model that arise when a parameter is modified, an
object is added or an output display is changed. These
situations of the simulation can be accessed by the student
from the same user interface. For example, in the two-body
problem, in which one of the bodies is fixed and the other
orbits around, depending on the initial conditions set on the
second body, we can obtain circular, elliptic, or parabolic
orbits, or free falls.

To integrate the model generated by C-OOL with web
documents, we have extended the language with two
higher-level layers, named SODA-1L and SODA-2L. The
SODA-1L layer (Simulation Course Description Language
1st Level) allows us to describe web documents containing
hypermedia elements that are not available in plain HTML,
such as simulations, two dimensional graphics for
functions, three dimensional graphics, and maps of

isosurfaces. SODA-1L forms a higher language abstraction
layer than OOCSMP, because the models defined in
OOCSMP can be treated as hypermedia elements from the
SODA-1L viewpoint.

The level called SODA-2L can group several SODA-1L
pages to form a course, a presentation or an article. SODA-
2L has primitives to add to the HTML pages navigation
links, headers, footnotes, to create and place indexes, etc.,
which can be inserted in the resulting HTML pages or
added as frames. In this level we add interface details
common to all the pages, which makes the SODA-1L pages
easy to reuse.

Figure 2 shows the organisation of the three layers.

Figure 2: The three layer scheme used to generate
simulation based documents.

3. ENHANCING STUDENT INTERACTION: MGEN.

MGEN is a tool that makes it possible to design graphically
the geometry of a problem that can be described by means
of partial differential equations, discretize that geometry
and add conditions, generating OOCSMP code that can be
reused in the models. It works in two modes:

n Compilative, used as a tool to generate OOCSMP code,
and also read OOCSMP code for the geometry.

n Interpretative, allowing the end user to design the
problem geometry, the conditions, and the equation to
be solved at runtime.

The student is thus able to:

n Design a geometry.
n Discretize it.
n Declare the equation to be solved.
n Declare and set initial and boundary conditions.

The possibility to declare equations and conditions inside
MGEN means that we have to call an OOCSMP interpreter
to solve the equations. Since the learning process has been
developed to be used through the Internet, MGEN and the
OOCSMP interpreter have been programmed in Java.
Figure 3 shows a scheme of a user interaction with the
system.

Figure 3: Student interacting with MGEN.

In the figure, MGEN is on the left (window in the
background), allowing the student to design a geometry,
discretize it, set the problem conditions, and choose (or
define) an equation to be solved. Then, the student changes
to the main simulation panel (to the right) and solves the
equation. In this panel, the exact solution can be seen on a
square (bottom left of the panel) as well as the grid used to
solve the equation (upper right of the panel). A more
detailed explanation of the MGEN possibilities is given in
section 4.

During the simulation, the student can interrupt the
execution, return to MGEN and make changes to the
geometry or the equations. The teacher can reduce the
freedom of the student to different extents:

n Propose predefined optimal equations to the student
(the student must use the equations proposed by the
teacher).

n Propose alternative expressions, which may be used as
initial or boundary conditions (the student must use the
expressions proposed by the teacher).

n Prevent the student to define equations.
n Prevent the student to define arbitrary initial or

boundary conditions.
n Prevent the student to design a geometry. The teacher

defines a geometry that cannot be changed, but the
student can choose the appropriate gridding technique
and simplexes.

n Prevent the student to design or discretize a geometry.
The teacher proposes a discretized geometry that
cannot be changed.

These restrictions are useful to build a web course. The first
pages may contain a simulation with few possibilities of
interaction. As the student becomes more expert, the next
pages will offer models with more possibilities of
interaction.

4. AN EXAMPLE

This section shows an example of the construction of a set
of course pages, in the last of which the student has
maximum possibilities of interaction. One equation and
several conditions are proposed, but in the last page the
student may freely change the equations and conditions and
define a geometry.

To illustrate the procedure, we are going to use a
progressive example. The course provides growing levels
of interaction and freedom. In the first page, we want the
student to solve the two dimensional equation:

The exact solution of this equation is given by
e2tsin(x+y)cosh(x+y) (Strickwerda, 1989).

Generating the calculated and exact solutions for the
equation will require the teacher to write a few lines in the
continuous simulation language OOCSMP, as shown in
listing 1.

[1] DATA exacta[75;75]
[2] DOMAIN qd:= QUADRILATERAL(

-1, -1, 1, -1, 1, 1, -1, 1
 ,INITIAL(SIN(X+Y)*CH(X+Y))

,ESSENTIAL(EDGE(1:4)
 ,-EXP(2.0*TIME)*SIN(X+Y)*CH(X+Y)))
[3] MESH m := ISOPARAMETRIC(

qd, QUADRILAT4, ELEMENTS(75,75))
[4] PDE pde1(0, 0, 1, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 0, IMPLICIT)
[5] m.setPDE(pde1)
[6] DYNAMIC

 exc[ROW;COL] :=
 EXP(2.0*TIME)*SIN((-1+COL*0.027) +

 (-1+ROW*0.027))*CH((-1+COL*0.027) +
 (-1+ROW*0.027))

[7] m.STEP()
[8] TIMER FINTIM:=0.3, delta:=0.005,
 PLdelta:=0.05
[9] ISOPLOT [C], m
[10]ISOPLOT [S], 1, 1, -1, -1, exacta
[11]GRIDPLOT [E], m

Listing 1: OOCSMP code to solve the problem.

In this first example the PDE [4], the mesh [3] and the
domain [2] are established by the teacher and the student
doesn’t have the opportunity to change the model. The
student is only allowed to start the simulation and see the
results. Three output forms have been selected to visualise
the results: two maps of isosurfaces that show the
calculated [9] and the exact [10] solutions (the latter on a
square of side 2), and a graphic to visualise the nodes of the
grid [11]. An instant in the execution of this model is
shown in figure 4.

Figure 4: A moment in the solution of the problem.

In the previous figure, the exact solution is shown at the
lower left corner, the calculated solution at the upper left
corner and the grid on the upper right corner.

Going one step further, the teacher can enable the use of
MGEN, so that the student is able to design the domain,
discretize it, assign initial and boundary conditions and
assign the pre-defined equation to the mesh. At this level of
interaction, it is necessary to change some lines in the
previous OOCSMP code:
[2] DOMAIN qd := MGEN(
 DYNAMIC(SIN(X+Y)*CH(X+Y)) ,
 DYNAMIC(EXP(2.0*TIME)*SIN(X+Y)*CH(X+Y)))

This line defines the functions that the student will be able
to choose from, as the initial and boundary conditions.
[3] MESH m := MGEN()

Which means that, using MGEN, the student will design the
mesh later. Line 5 disappears to allow the student to select
the PDE to be solved.

With these lines, in the OOCSMP code, the C-OOL
compiler will produce an applet window which invokes
MGEN, where the student will be able to design graphically
the geometry of the problem, discretize it, assign
conditions, etc. Figure 5 shows one of the steps while
designing the problem geometry with MGEN.

The domains menu allows the student to create new
domains to be discretized. Students can choose between
circular sectors, triangles and 4 or 8 node quadrilaterals.
Once selected the student can design it freely in the
geometry edition area, using the mouse.

The meshes menu allows the student to mesh a selected
domain as well as set and remove the equation to be
meshed. Students can choose between Delaunay,
Interpolation and Elliptic techniques to mesh the domains
with triangles (3 or 6 nodes) or quadrilaterals (4 or 8
nodes).

Figure 5: Example of a MGEN window for the above code.

The set conditions menu allows the student to establish the
initial and boundary conditions (natural or essential). These
conditions can be freely established using the commands
area and/or selected from the function and PDE selection
lists to the right, depending on the restriction level set by
the teacher.

Figure 3 shows a moment in the execution of the simulation
with this degree of interaction.

In the last and higher level of interaction, the teacher allows
the student to introduce functions and PDES using the
MGEN interface at runtime. Lines [2] and [4] in the
previous OOCSMP code should be programmed thus:

[2] DOMAIN qd := MGEN(
 DYNAMIC(SIN(X+Y)*CH(X+Y)),
 DYNAMIC(EXP(2.0*TIME)*SIN(X+Y)*CH(X+Y))
,USER)

[4] PDE pde1 ((0, 0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, IMPLICIT), USER)

With these lines, the teacher offers pre-defined functions
and a PDE, but allows the student to introduce new ones at
simulation time using MGEN.

This simulation applet can be included easily in an HTML
page and in a web course using the SODA-1L and SODA-
2L levels. The models are accessible from:

http://www.ii.uam.es/~jlara

These examples show that the system can be adapted easily
to different users or to a user through a learning process.
The OOCSMP programs are very simple and go from a
basic level, where the student can only visualise the results,
to more complicated stages, where the student has total
freedom of interaction.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented OOCSMP, a language that
makes it easy to write simulation models, in particular those
that can be described by partial differential equations; C-
OOL, a compiler of OOCSMP that generates C++,
C++/Amulet and Java code; and SODA, a set of language
extensions to include the simulation models in web courses.

These tools have been enhanced with the development of
MGEN, which allows the student to interact with the
problem at runtime. Using MGEN, the student can design a
geometry, discretize it, declare the equation to be solved,
and declare and set initial and boundary conditions. These
possibilities made it necessary to integrate an OOCSMP
interpreter with MGEN. In this way, the student is able to
make changes to the geometry or the equations during the
simulation process.

The teacher has several ways to restrict the student actions
so that the course can be adapted in a progressive way to
the student necessities and capabilities. Novice students
will have a very limited control of the system, while
advanced students will have total freedom of interaction.

In the future, we are planning to extend the OOCSMP
interpreter, so that the student can define entire simulation
models at runtime. We are also planning to add some kind
of tutoring system to help the student to carry out typical
tasks with the environment. Some work has been done, but
just for the case when the object language generated by the
compiler is C++/Amulet (Alfonseca et al. 1998). This tutor
could also help the student to choose the most appropriate
form of discretizing the geometry, the simplex or the
resolution method. This is similar to the approach proposed
by the Problem Solving Environments (Akers et al. 1997),
although these environments don’t usually deal with course
design and construction, student profiles, etc.

We are also working to provide a graphical interface for the
construction of the simulation models (de Lara and
Vangheluwe, 2002). Currently, they have to be written
using a text editor. Ideally, the tool would provide facilities
for collaborative programming across the Internet, covering
in this way another aspect of the term “web-based
simulation” (Cubert and Fshwick, 1998) (Fishwick, 1998).

ACKNOWLEDGEMENT

This paper has been sponsored by the Spanish
Interdepartmental Commission of Science and Technology
(CICYT), project number TEL1999-0181

REFERENCES

Akers, R.L. Kant, E., Randall, C.J., Steinberg, S., Young, R.L.
(1997). “Problem Solving Environments and the Solution of
Partial Differential Equations”. In Internet at: http://www-
cgi.cs.purdue.edu/cgi-bin/acc/pses.cgi.

Alfonseca,M., Pulido, E., Orosco, R., de Lara, J. (1997).
OOCSMP: An Object-Oriented Simulation Language.
Proceedings of the 9th European Simulation Symposium
ESS97 (pp. 44-48). SCS Int., Erlangen.

Alfonseca, M., García, F., de Lara, J., Moriyón, R. (1998).
Generación Automática de Entornos de Simulación con
Interfaces Inteligentes (pp. 5-13). ADIE, Octubre Diciembre
1998.

Alfonseca, M., de Lara, J., Pulido, E. (1999). Semiautomatic
Generation of Web Courses by Means of an Object-Oriented
Simulation Language. Special issue of SIMULATION, Web-
Based Simulation 73, 1: 5-12.

Bredeweg, B., Winkels, R. (1998). Qualitative Models in
Interactive Learning Environments: an Introduction. Special
issue of Interactive Learning Environments on "the Use of
Qualitative Reasoning Techniques in Interactive Learning
Environments" 5: 1-18.

Campos, A.M.C., Hill D.R.C. (1998). An Agent-Based
Framework for Visual-Interactive Ecosystem Simulations.
TRANSACTIONS of the SCS International 15, 4: 139-152.

Cubert, R.M., Fishwick, P.A. (1998). OOPM: An Object-Oriented
Multimodeling and Simulation Application Framework.
SIMULATION 70, 6: 379-395.

de Lara, J., Vangheluwe, H. AToM3: A Tool for Multi-formalism
Modelling and Meta-Modelling. Lecture Notes In Computer
Science, 2306, pp.:174-188 FASE track in ETAPS’02 in
Grenoble, April 2002. See AtoM3 Home page at:
http://moncs.cs.mcgill.ca/MSDL/research/projects/AtoM3

Fishwick, P.A. (1998). Issues with Web-Publishable Digital
Objects. Proceedings of SPIE: Enabling Technologies for
Simulation Science II (pp. 136-142).

IBM Corp. (1972). Continuous System Modelling Program III
(CSMP III) and Graphic Feature (CSMP III Graphic Feature)
General Information Manual. IBM Canada, Ontario, GH19-
7000.

Maly, K., Overstreet, C.M., González, A., Denbar, M., Cutaran,
R., Karunaratne, N., Srinivas., C. J. (1998). Use of Web
Technology for Interactive Remote Instruction. Proceedings of
the Web’97 Conference. In Internet at :
http://www7.scu.edu.au/programme/posters/
1855/com1855.htm

OOCSMP home page: http://www.ii.uam.es/~jlara/investigacion
Page, E.H. Buss, A., Fishwick, P.A., Healy, K., Nance, R.E., Paul,

R.J. (1999). Web-Based Simulation: Revolution or
Evolution?. To appear in ACM Transactions on Modeling and
Computer Simulation.

Page, E.H., Opper, J.M, (1999). Investigating the Application of
Web-based Simulation Principles within the Architecture for a
Next-Generation Computer Generated Forces Model. To
appear in Future Generation Computer Systems, Elsevier
Science Publishing

Page E.H. Buss, A., Fishwick, P.A., Healy, K., Nance, R.E., Paul,
R.J. (2000). Web-Based Simulation: Revolution or
Evolution?. To appear in ACM Transactions on Modeling and
Computer Simulation.

Strikwerda, J.C. (1989). Finite difference schemes and partial
differential equations. Chapman & Hall, New York.

