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INTRODUCTION

Network traffic measurements collected across
the Internet provide very meaningful informa-
tion for researchers, service providers, and other
members of the Internet community [1]. On one
hand, network operators may benefit from such
information in their goal of ensuring the appro-
priate quality of service (QoS) to their cus-
tomers. Indeed, the ever-increasing user
demands and wide variety of application require-
ments are forcing Internet service providers
(ISPs) to develop network capacity plans very
carefully, not only to maintain the QoS provid-
ed, but also to reduce the need for investment.
ISPs have not underestimated the benefits of
traffic measurements, and have traditionally
applied their potential to other related fields,
namely the performance evaluation of networks,
the detection of anomalies and denial of use
attacks, and even the generation of the clients’
invoices [2].

On the other hand, the research community
has also found essential the use of real network
measurements to better understand Internet
dynamics and further apply this knowledge to
the development of network models, with direct
application to network operators’ needs men-
tioned above [3].

However, the collection of representative
traffic measurements is not a straightforward
process. In light of this, the authors in [4] pro-
vide a detailed explanation of the problems that
can be found in the simulation of the Internet,
some of which also arise in the process of mea-
suring networks. Examples of such problems
include the large size and heterogeneous nature
of the Internet, the ever-increasing number of
new applications being introduced to the net-
work, the fast and unpredictable way the Inter-
net changes, the size and date of the sample
collected, and the handling of outliers in the
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measuring process. To overcome these limita-
tions, the authors in [4] try to identify invariants
in Internet behavior in order to reduce the com-
plexity of its characterization. An invariant is
defined as a facet of behavior that is empirically
shown to persist for some time in a wide set of
measured samples. Examples include diurnal
patterns of activity, the probability distributions
that describe connection sizes and durations, and
the distribution of interarrival times between
consecutive packets in aggregated Internet traf-
fic and between network user sessions.

In this article we pinpoint two additional dif-
ficulties: first, the spatial diversity of measure-
ments, that is, whether the information arisen
from measurements collected at diverse loca-
tions with similar features differs significantly or
not; and second, the time required to capture
stationarity, the temporal diversity, that is, the
amount of measuring time needed to bring a
sampled distribution that persists over time.
Essentially, we try to answer the following two
questions:

Can the conclusions derived from a measure-
ment experiment in a given network be further
applied to a similar network/scenario? And, how
long should the measurement experiments last until
stability in the metrics under study is reached?

Throughout this article, the term similar net-
works shall refer to networks that share certain
common intrinsic features. In this light the
research community has generally accepted that
the conclusions derived from a given network are
valid for a scenario with similar characteristics,
such as population size, bandwidth capacity, and
filtering policy. Therefore, measurements have
been taken from links that are believed to be suf-
ficiently representative of the Internet, typically
university, residential, or even smaller networks.

To answer the questions above, this work
studies the distribution of the most popular IP
addresses and port numbers (often bound to
specific services/applications) in a set of universi-
ty network access points nationwide. It is worth
noting that this study is not focused on the mea-
surement results themselves, which have been
reported elsewhere, but instead on the represen-
tativeness of network measurement experiments in
terms of spatial and temporal diversity. Temporal
diversity is related to the concept of “horizontal
aggregation” introduced in [5], whereby the
authors study the necessary timescale such that
aggregated traffic follows a Gaussian distribu-
tion. However, in this article we follow a rather
different approach: the problem is not to esti-
mate the timescale to reach Gaussianity but to
rather find the time horizon above which the dis-
tribution parameters remain stable. Such a time
horizon is typically in the range of days or weeks,
much coarser than those often considered in
such horizontal aggregation studies (seconds or
milliseconds). Other work has aimed at ranking
the top traffic generators in a network scenario,
often known as “heavy hitters,” and their persis-
tence over time in such ranking [6]. Again, this is
not the purpose of this article since we are only
taking into account the traffic distribution for
the most active ports and IP addresses, without
making an explicit identification of them.

Concerning spatial diversity, this has received

little attention from the research community.
For instance, the authors in [7] make a compari-
son study of the inter- and intra-use of main-
frames between seven Japanese regions in the
late 1980s; nonetheless, the spatial diversity of
the measurements was not analyzed. We believe
that such lack of spatial diversity related studies
is due to the difficulties in capturing traffic from
a large number of distant networks and over
large periods of time.

In fact, this work analyzes an extensive set of
measurements (Netflow records) collected from
a large number of university networks kindly
donated by RedIRIS (the Spanish National
Research and Education Network [NREN]).
The following analysis is performed over the
traffic flow records collected from April to
September 2007, comprising a total of 13,000
million flows. RedIRIS spans more than 70 uni-
versities whose size, user population, and organi-
zation is well documented in central repositories
by the Spanish Ministry of Education for statisti-
cal purposes. Therefore, it is possible to group
universities by similar features, such as number
of users, bandwidth, and traffic filters (e.g.,
restrictions on peer-to-peer [P2P] applications
such as music file sharing), and proceed with the
analysis to check whether or not university net-
works with similar intrinsic characteristics produce
similar traffic patterns.

The remainder of this work is organized as
follows. The next section describes in detail the
topology of the Spanish NREN and the mea-
surement set under study. We then present the
experiments performed and results obtained in
both the time and space dimensions. Finally, we
conclude this work and summarize the main
findings obtained.

MEASUREMENTS
The Spanish NREN serves more than 260 insti-
tutions, mainly universities and research centers,
and comprises 18 points of presence across the
country, as shown in Fig. 1. For the experiments,
RedIRIS provided the traffic measurements at
the access routers of a large number of universi-
ties interconnected by the Spanish NREN, typi-
cally of bandwidth ranging from 100 Mb/s to 1
Gb/s.

In what follows we denote downstream traffic
as the collection of flows that are sourced by a
host located somewhere in the Internet and des-
tined for a host located in the university net-
work, and we denote upstream traffic as the
converse (i.e., the collection of flows that are
sourced by a host in the university network and
destined for a host in the Internet, Fig. 2). Note
that with these definitions, interuniversity traffic
is neither downstream nor upstream traffic;
indeed we did not include such traffic in our
experiments.

DATA COLLECTION INFRASTRUCTURE
In this section we describe the data collection
infrastructure and data format. All the access
routers feature flow monitoring (Netflow) capa-
bilities. A flow is a sequence of packets that
share the same source and destination IP
addresses, port numbers, and protocol. In this

RedIRIS spans more

than 70 universities

whose size, user

population, and 

organization is well

documented in 

central repositories

by the Spanish 

Ministry of Education

for statistical 

purposes. Therefore,

it is possible to

group universities by

similar features.

DORADO LAYOUT  10/22/08  3:33 PM  Page 149



IEEE Communications Magazine • November 2008150

light, a flow summary includes traffic volume in
bytes and packets, port numbers, source and
destination IP addresses, type of service, input
and output interface indices (as per Simple Net-
work Management Protocol [SNMP] manage-
ment information base [MIB]), together with
timestamps for the flow beginning and end. For
a thorough description of Netflow, the reader is
referred to Internet Engineering Task Force
Request for Comments (IETF RFC) 3955. The
flow summaries are sent to a central repository,
located at the Universidad Autónoma de Madrid
(UAM) campus. The average input rate to the
repository was 2 Mb/s (flow summaries) over a
six-month period (April to September 2007).

Figure 1 shows the measurement system
architecture. First, the Flow-Tools software pack-
age was used for data collection at the reposito-
ry. Then a number of statistics were obtained by
the processing subsystem, which included total
bandwidth consumption per university, peak
hour bandwidth requirements, and most active
IP addresses and port numbers. Finally, the
monitoring system provides a graphical interface
through which such processed information can
be accessed via the Web and properly visualized
(this is the third stage).

UNIVERSITY NETWORKS UNDER STUDY

The collected traffic sample comprised more
than 70 universities, with different user base
populations, access link capacities, filtering poli-
cies (P2P applications), proxies, and Network
Address Translation (NAT) capabilities. Clearly,
such intrinsic features have an impact on the traf-
fic pattern. For instance, if NAT services or
proxies are available, it is very possible to find
that most traffic comes from a single IP address,
but the truth is that a large number of traffic
sources are sharing the same IP address. In the
same way, NAT not only affects IP addresses but
also port numbers, since every traffic source
under the same IP address is given a different
port number.

Consequently, we made a choice of universi-
ties with similar features, and compared the
resulting most popular ports and IP addresses
distribution. In this light we have carefully select-
ed nine universities out of the total set for which
the above intrinsic features are very much alike.
First, regarding the filtering policy, we have cho-
sen universities in which most noneducational
traffic is allowed with no rate control except for
well-known peer-to-peer applications. Addition-
ally, it is worth noticing that the analyzed mea-
surements comprise traffic to the Internet only,
not between campuses. Thus, such interuniversi-
ty traffic from supercomputing or grid facilities
is explicitly not included. Furthermore, we also
performed an inspection of the most active flows
in order to ensure that no outliers were present
in the sample.

Second, concerning the use of NAT, we focus
on most frequently accessed IP addresses and
ports on the Internet side, that is, destination IP
addresses and port numbers of upstream flows
from campus networks, and origin IP addresses
and port numbers of downstream flows (Fig. 2).
Such measurements provide a more meaningful
and representative portrait of user behavior
when browsing Internet content, rather than
pursuing a characterization of Internet users that

n Figure 1. Measurement system architecture (on the left) and RedIRIS network topology (on the right).
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access hosts in university campuses. Anyway, it is
worth mentioning that the selected centers make
negligible use of NAT and proxies, if any.

The population size of the universities under
study ranges from 20,000 to 40,000 members
with a similar proportion between subpopula-
tions (strata, i.e., students, faculty, and adminis-
tration), thus favoring the representativeness of
the aggregated traffic (Table 1). Furthermore,
this table shows the number of collected Netflow
summaries for the selected universities, along
with the number of active IP addresses in the
peak traffic hour. The latter gives a hint of the
population activity, to reinforce the fact that the
sample is representative in terms of number of
active users. In addition to this, the access band-
width capacity in all universities under study is
exactly 1 Gb/s, and they are connected to the
Internet through a single exchange point located
in Madrid. We conclude that the selected uni-
versities are similar in terms of user base popu-
lations, access link capacity, filtering policies
(P2P applications), and availability of proxies
and NAT services. It is finally worth remarking
that the measurements were collected over the
same time period, thus avoiding any contamina-
tion of the spatial diversity by temporal factors.

EXPERIMENTS AND RESULTS
The following presents a measurement analysis
from the spatial diversity point of view, that is,
whether or not equivalent universities share sim-
ilar behavior. It also shows the timescale for
which the observed behavior becomes stable
(i.e., the sampling distribution does not signifi-
cantly change as the sample size increases).

A typical invariant that can be observed from
measurements of a university network concerns
the IP addresses and port numbers most widely
found in the traces. It is well known that,
although the amount of possible destination IP
addresses of flows and port numbers is huge,
most users typically connect to the same sites

and use the same services [8]. Moreover, the
amount of traffic either sourced or destined to
the most popular IP addresses and port numbers
follows a Zipf distribution. Zipf-like phenomena
has been observed in the past in internetwork
traffic traces [9], and often appears in other dis-
ciplines, such as economics, sociology, and lin-
guistics.

The Zipf cumulative distribution function is
given by

where s > 0 characterizes the Zipf distribution,
N is the number of most popular IP addresses or
port numbers included in the study, and k refers
to their rank.

In our spatial analysis we study the most pop-
ular (comprising most exchanged traffic in bytes)
IP addresses and port numbers. Thus, we shall
use F(k) to represent the cumulative fraction of
traffic (in bytes) over the total that are sent to
the kth most popular IP address or port number
k = 1, …, N in the Internet.

For example, in Zipf distributions with s = 1,
the most popular port number (k = 1) or IP
address comprises as much as twice the traffic
exchanged by the second (k = 2) most popular
one, and thrice the traffic of the third (k = 3)
most popular one, and so on. For s > 1, the per-
centage of total traffic of the most popular port
numer or IP address with respect to the others is
even larger and vice versa (i.e., if s < 1, such
percentage is smaller). Hence, the s parameter is
related to the tail decay of the Zipf distribution.

The purpose of the following experiments
(spatial diversity) is to check whether or not uni-
versity networks with similar intrinsic features, as
discussed in the previous section, show the same
behavior in terms of the s parameter of the Zipf
law.

However, prior to any spatial analysis, it is
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n Table 1. User base population size, average number of flows collected per day, and average IP addresses
in the peak hour per day for all universities under study.

Universities Population (ratio stu-
dents/staff)

No. of flows
per day

Different IP addresses in the peak hour
(from university/to Internet)

U1 40,000 (9.6) 1,400,000 4000/23,000

U2 29,000 (10.8) 1,300,000 4000/22,800

U3 20,000 (12) 2,000,000 3200/30,000

U4 31,500 (11) 5,870,000 5000/90,000

U5 30,500 (10.3) 3,000,000 4300/66,000

U6 36,000 (11.2) 4,000,000 5600/66,000

U7 33,500 (12.2) 3,500,000 4500/58,000

U8 26,500 (11.2) 2,400,000 6500/30,000

U9 28,000 (10.5) 2,500,000 2000/30,000
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first necessary to find a timescale at which the
parameters under study are stable. This is the
purpose of the next section.

TEMPORAL DIVERSITY ANALYSIS
This section examines the temporal aspect of the
measurement set over which we perform the
spatial diversity analysis in the next section. In
other words, this section aims to check that the
measurement set under study shows stationarity
features (i.e., distributions that do not change
with time). To do so, we evaluate the number of
days worth of data required until the s parame-
ter of the Zipf distribution for the most popular
IP addresses and port numbers remains stable.

Figure 3 shows the most active destination IP
addresses and port numbers of upstream flows
for University U1 (for 1-day and 1-month time
slots), together with its most likely Zipf distribu-
tion, obtained following the linear least squares
regression technique described in [10]. The accu-
racy between the measured data and the theoret-
ical Zipf fit can be visually checked in the figure.
Note that only the 15 (N = 15) most popular IP
addresses and port numbers were taken into
account in the estimation of the Zipf parameter
s. We remark that similar behavior was observed
for N = 8 and N = 20, although such results
have not been included for the sake of brevity.

This figure also shows that the Zipf model
most accurately matches the measurements
when 30 days worth of data is assumed (Fig. 3,

right). Additionally, the estimated s values vary
for different timescales. Hence it is necessary to
consider a large traffic sample until the s param-
eter becomes stable. Following this, Fig. 4 shows
the estimated s value assuming several days of
measurements. As shown, the s parameter esti-
mate becomes smoother as we increase the trace
length, bringing a stable value after 30 days of
data. We consider an s estimate stable if it varies
less than 5 percent after five consecutive days.

It is also worth noticing that the s estimate
after 30 days of data is different for all networks
under consideration. This issue is analyzed in the
next section.

SPATIAL DIVERSITY OF MOST POPULAR IP
ADDRESSES AND PORT NUMBERS

Figure 5 shows the cumulative distribution func-
tion (CDF) of the 15 most popular IP addresses
(on the right) and port numbers (on the left) for
all universities under study, in both the upstream
(top) and downstream (bottom) directions from
the Internet side. The numbers shown refer to
the cumulative ratio of transferred bytes over
the total in the trace. Following the results of
the previous section, we have used 30 days worth
of data in order to obtain a reliable estimate of
the CDF.

Surprisingly, although the networks under
study were carefully chosen with similar intrinsic
features (large aggregation level, filtering policy,
access bandwidth, proxies, NAT, and population

n Figure 3. Cumulative distribution function of most popular port numbers and IP addresses (upstream) for U1 and its Zipf distribution
fit, assuming one day of data (left) and 30 days of data (right).
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size and strata), the observed traffic profiles, as
measured by the s parameter values, are differ-
ent from one another. It is worth noticing that
the population sizes of all networks under study
are large enough (more than 20,000 Internet
users) that the CDFs are expected to converge
to the same distribution.

In conclusion, the most popular IP addresses
and port numbers of each university network fol-
low a Zipf distribution, but the spatial analysis
has shown that the particular s parameter is dif-
ferent in each case (Fig. 4). Hence, measurements
collected at one university are not generally valid for
another, even if they have similar intrinsic features.

CONCLUSIONS AND FUTURE WORK
This work provides a new point of view in the
study of network measurements: spatial analysis.
Essentially, spatial analysis aims to check
whether or not the conclusions derived from the
analysis of a given set of measurements gathered
from a particular network scenario are valid for
another similar network scenario. The answer to
this question is negative. Although a number of
invariants have been identified that persist across

different scenarios, our findings show that when
measurements from networks with similar intrin-
sic features are compared, the distribution of the
most popular port numbers and IP addresses dif-
fer from one network to another.

Additionally, the experiments have shown
that the distribution of the most popular IP
addresses and port numbers experience high
variability, and only reach some stability when
long periods of measurements are considered,
typically in the range of weeks. However, it is
important to remark that, given the heteroge-
neous nature of the Internet and the fast and
unpredictable way it changes, the results do not
remain valid for long periods of time, thus
requiring continuous monitoring and measuring,
as noted in [4].

This involves two important consequences.
First, the duration of internetwork experiments
must last until the measurements under study
become stable, which involves a much longer
traffic trace than usually believed; second, sin-
gle-link measurements do not suffice for a mean-
ingful analysis, and hence a spatially diverse
measurement experiment must be carried out.
As a result, the required measurement infra-

n Figure 4. Most-likely Zipf distribution s value for the 15 most popular port numbers and IP addresses for all university networks (only
upstream flow direction) for various timescales of traffic statistics (from 1 to 40 days of aggregated data).
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structure must be designed accordingly, and may
involve sophisticated and costly equipment, in
terms of both storage capabilities and number of
probes.

While this result is worthwhile to report itself,
a number of interesting research directions
appear from these conclusions, for instance, the
search for an explanation of why spatial diversity
occurs. As future work, the authors will focus
their attention on the most active users, since
they are highly variable and seem to be responsi-
ble for the majority of traffic generated in an
internetwork.
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