
Order this document
by AN1752/D

Motorola Semiconductor Application Note

AN1752
Data Structures for 8-Bit Microcontrollers
By Brad Bierschenk

Consumer Systems Group Applications Engineering
Austin, Texas

Introduction

A data structure describes how information is organized and stored in a
computer system. Although data structures are usually presented in the
context of large computers, the same principles can be applied to
embedded 8-bit processors. The efficient use of appropriate data
structures can improve both the dynamic (time-based) and static
(storage-based) performance of microcontroller software.

This application note presents data structures which are useful in the
development of microcontroller software. The applications presented
here are by no means absolute. One can find an infinite variety of ways
to apply these basic data structures in a microcontroller application.

Strings

A string is a sequence of elements accessed in sequential order. The
string data structure usually refers to a sequence of characters. For
example, a message which is to be output to a display is stored as a
string of ASCII character bytes in memory.
© Motorola, Inc., 1998 AN1752

Application Note
Storing Strings A string of elements must be identified by a starting and ending address.
A starting address for a string can be defined using an absolute address
label or by using a base address of a group of strings and identifying
particular strings with an offset into the group.

There are several methods of terminating string information. One
common way of terminating a string is by using a special character to
mark the end of the string. One terminating character to use is the value
$04, an ASCII EOT (end-of-transmission) byte.

Figure 1 shows an example of string data.

Figure 1. String Data Structure

Another method of terminating a string is to identify its length. Its length
can then be used as a counter value, eliminating the need for an extra
byte of storage for the end of the string.

A string of ASCII characters can be terminated without using an extra
byte of storage by using the sign bit (most significant bit) as an indicator
of the last byte of the string. Because ASCII character data is only seven
bits long, the last byte of a string can be indicated by a 1 in its most
significant bit location. When using this method, the programmer must
be careful to strip off the sign bit before using the ASCII character value.

MESSAGE POINTER
$50

$51

$52

$53

$54

$55

’O’

’L’

$04

’H’

’E’

’L’

ADDRESSDATA
AN1752

2 MOTOROLA

Application Note
Strings
Accessing Strings An efficient way of accessing a string is with the indexed addressing
mode and the INCX or DECX instruction. Listing 1. String Storage
Example and Listing 2. String Access Example illustrate this string
storage scheme and how to use it.

Listing 1. String Storage Example
*---
* Absolute string addresses
* One way of specifying string data
*---
Message1 FCB 'This is a string'

FCB $04
Message2 FCB 'This is another string'

FCB $04

*---
* Indexed string addressing
* Another way of specifying string data
*---
Msgs EQU *
Message3 EQU *-Msgs

FCB 'This is a string'
FCB $04

Message4 EQU *-Msgs
FCB 'This is another string'
FCB $04

Listing 2. String Access Example
*---
* String display code
* A generic method of displaying an entire string.
*---
LoadMsg LDX #Message1 ;Offset into X
Loop LDA Messages,X ;Load character

CMP #$04 ;Check for EOT
BEQ StringDone ;End of string
JSR ShowByte ;Show character
INCX ;Point to next
BRA Loop

*---
* String storage code
*---
Messages EQU *
Message1 EQU *-Messages

FCB 'This is a string'
FCB $04
AN1752

MOTOROLA 3

Application Note
String Applications Practical applications of strings include storing predefined "canned"
messages. This is useful for applications which require output to text
displays, giving users information or prompting users for input.

Strings are also effective for storing initialization strings for hardware
such as modems. Strings may also store predefined command and data
sequences to communicate with other devices.

Stacks

A stack is a series of data elements which can be accessed only at one
end. An analogy for this data structure is a stack of dinner plates; the first
plate placed on the stack is the last plate taken from the stack. For this
reason, the stack is considered a LIFO (last in, first out) structure. The
stack is useful when the latest data is desired. A stack will typically have
a predefined maximum size.

 shows a representation of a stack.

Figure 2. Stack Data Structure

STACK POINTER

STACK BOTTOM

STACK TOP

(MAXIMUM)
$50

$51

$52

$53

$54

$55

$57

$56

DATA BYTE

DATA BYTE

DATA BYTE

DATA BYTE

DATA BYTE

EMPTY

EMPTY

EMPTY

ADDRESS

STACK GROWS
IN THIS

DIRECTION

DATA
AN1752

4 MOTOROLA

Application Note
Stacks
Just like a physical stack of items, the software stack has a bottom and
a top. Software should keep track of the location of the top of the stack.
This address can either point to the first piece of valid data or it can point
to the next available location. For the following examples it will be
pointing to the next available location.

Stack Reading
and Writing

The read operation of a stack is called "pulling" (or "popping"), and the
write operation of a stack is called "pushing." When one pulls data from
the stack, the data is removed from the stack and the stack pointer is
adjusted. When data is pushed onto the stack, the stack pointer is
adjusted and the data is added to the stack.

So, in the implementation of Figure 2 , a push operation would first
decrement the stack pointer and then store the data to the address
pointed to by (stack pointer) +1. A pull operation would retrieve the data
at (stack pointer) +1 and then increment the stack pointer.

Two error conditions are intrinsic to this data structure; underflow and
overflow. A stack underflow occurs when a user attempts to pull
information off an empty stack. A stack overflow occurs when a user
attempts to push information onto a stack which is full. When using this
data structure, these conditions should be attended to. An underflow
condition should return an error. On an overflow, one can either reject
the data and return an error, or the stack can "wrap" around to the
bottom, destroying the data at the bottom of the stack.

MCU Hardware
Stack

Motorola MCUs utilize a stack structure for saving program context
before transferring program control. This interaction may be the result of
a jump or interrupt. As a result of an interrupt, the stack is used to push
the values in the X, A, and CCR (condition code register) registers, as
well as the 16-bit PC (program counter) value. When a jump instruction
is encountered, the PC value is pushed on to the stack. On returning
from an interrupt (RTI instruction) the program context (registers and
PC) are pulled from the stack. When returning from a jump (RTS
instruction) the PC is pulled from the stack.
AN1752

MOTOROLA 5

Application Note
HC05 Stack The HC05 Family of MCUs have limited stack access. The only
operation that can be performed with the MCU’s stack pointer is to reset
it. The RSP instruction will reset the stack pointer to $FF. The HC05
stack pointer also has a limited size of 64 bytes. When the stack pointer
grows beyond address $C0, the stack pointer wraps around to $FF,
destroying any existing data at that address.

HC08 Stack The HC08 Family of MCUs has a more flexible stack structure. The stack
pointer can be set to any address. The HC08 MCUs also have an added
addressing mode which is indexed by the stack pointer. In this way, a
user can pass parameters to subroutines using the hardware stack,
accessing the parameters using stack pointer indexed addressing.

Other HC08 Family instructions allow data to pushed on and pulled off
the stack. The stack pointer can also be transferred to the X index
register and vice-versa. With the addition of these instructions and
addressing modes, a user has good control over the stack in the HC08
MCU.

Stack Applications A stack is useful for dynamically allocating memory or passing
parameters to and from subroutines. Typically, MCU RAM variables are
statically allocated at assembly time.

For example:

; Statically allocated RAM variables
ORG RAMSPACE

MyVar1 RMB 1
MyVar2 RMB 1
MyVar3 RMB 2

; Another method to statically allocate variable
MyVar4 EQU RAMSPACE+4
MyVar5 EQU RAMSPACE+5

This is appropriate for global variables, which need to be available
throughout the program flow. However, for local variables which are only
used in specific subroutines, this method is not the most efficient. The
RAM space these variables use can be dynamically allocated using a
software stack or MCU stack, freeing up RAM memory. The same
AN1752

6 MOTOROLA

Application Note
Stacks
method can be applied to subroutine input and output parameters,
passing them on the stack instead of in the A or X register.

Listing 3. Software Stack shows a software implementation of a stack,
which would be appropriate for the HC05 Family of microcontrollers.
AN1752

MOTOROLA 7

Application Note
Listing 3. Software Stack
*---
* STACK.ASM
* A simple software stack implementation Simply shows the PUSH and PULL operations on
* a stack; not intended to be a complete application.
* StackPtr points to next (empty) available location
* Written for the MC68HC705P6A MCU
*---
*---
* Memory map equates
*---
RAMSPACE EQU $50
ROMSPACE EQU $100
RESETVEC EQU $1FFE

*---
* Stack equates
*---
STACKSIZE EQU $08
STACKBOT EQU $70 ;Bottom of software stack
STACKMAX EQU {STACKBOT-STACKSIZE+1} ;Maximum address of stack

*---
* RAM variables
*---

ORG RAMSPACE ;First address of RAM
StackPtr RMB 1 ;Pointer to next stack byte

*---
* Start of program code
*---

ORG ROMSPACE ;Start of ROM
Init LDA #STACKBOT ;Initialize the stack pointer

STA StackPtr

*---
* Some simple read and write operations
* For illustration only
*---

LDA #$01
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
BCS FullErr
JSR PushA ;Write to stack
AN1752

8 MOTOROLA

Application Note
Stacks
BCS FullErr
JSR PushA ;Write to FULL stack
BCS FullErr
JSR PushA ;Write to FULL stack
BCS FullErr
JSR PullA ;Read from stack
BCS EmptyErr
JSR PullA ;Read from stack
BCS EmptyErr
JSR PullA ;Read from stack
BCS EmptyErr

Loop BRA * ;Your code here

EmptyErr BRA * ;Your code here
FullErr BRA * ;Your code here

*---
* Subroutines - The code to access the data structure
*---
*---
* PUSH subroutine
* Push the contents of the accumulator onto stack
* Use C bit of CCR to indicate full error
*---
PushA LDX StackPtr ;Get stack pointer

CPX #STACKMAX ;Check for full stack
BLO Full
DECX ;Decrement stack pointer
STA 1,X ;Store data
STX StackPtr ;Record new stack pointer
CLC ;Clear carry bit
RTS ;Return

Full SEC ;Set carry bit for error
RTS ;Return

*---
* PULL subroutine
* PULL a byte off the stack into accumulator
* Use C bit of CCR to indicate empty stack error
*---
PullA LDX StackPtr ;Get stack pointer

CPX #STACKBOT ;Check for empty stack
BEQ Empty
LDA 1,X ;Get data
INCX ;Increment stack pointer
STX StackPtr ;Record stack pointer
CLC ;Clear carry bit
RTS ;Return

Empty SEC ;Set carry bit
RTS ;Return

*---
* Vector definitions
*---

ORG RESETVEC
FDB Init
AN1752

MOTOROLA 9

Application Note
Using the software stack, a subroutine can allocate variables by pushing
(allocating) bytes on the stack, accessing them with indexed addressing
(relative to the stack pointer variable) and pulling them (deallocating)
before returning. In this way, the same RAM space can be used by
multiple subroutines.

Parameters can be passed to and from subroutines as well. An input
parameter can be pushed on the stack. When a subroutine is entered, it
can access the input parameter relative to the stack pointer. By the same
token, a subroutine can push an output parameter onto the stack to be
passed back to the calling routine.

The MCU hardware stack and stack pointer can also be used for these
purposes. Because of the expanded instruction set, the use of the MCU
stack is easily exploited in the HC08 Family of microcontrollers.
Listing 4. Using the HC08 Stack Operations shows an example of
using the HC08 MCU stack to pass parameters and allocate local
variables.

Listing 4. Using the HC08 Stack Operations

Using the stack to pass parameters and allocate variables optimizes
memory usage.

*---
* Code segment example of using the HC08 stack to pass parameters and
* allocate local variables.
* Not intended to be a complete application.
*---

LDA #$AA ;Load some data to be passed
PSHA ;Push parameter for subroutine
PSHA ;Push parameter for subroutine
JSR Sub ;Call subroutine
PULA ;Parameter passed back
STA Result2
PULA ;Parameter passed back
STA Result1

Loop BRA * ;Your code here
AN1752

10 MOTOROLA

Application Note
Stacks
*---
* Subroutine which uses the stack for variable access
*---
*
* ---------
* SP--->Empty
* ---------
* LOCAL2
* ---------
* LOCAL1
* ---------
* PCH
* ---------
* PCL
* ---------
* PARAM2
* ---------
* PARAM1
* ---------
*---
PARAM1 EQU 6 ;Parameters passed in
PARAM2 EQU 5
LOCAL1 EQU 2 ;Local variables
LOCAL2 EQU 1
*---
Sub PSHA ;Allocate local variable

PSHA ;Allocate local variable

LDA PARAM1,SP ;Load the parameter passed in
ROLA ;Do something to it
STA LOCAL1,SP ;Store in a local variable
LDA PARAM2,SP ;Load the parameter passed in
ROLA
STA LOCAL2,SP ;Store in a local variable
LDA LOCAL1,SP
STA PARAM1,SP ;Store value to be passed back
LDA LOCAL2,SP
STA PARAM2,SP ;Store value to be passed back
PULA ;Deallocate local variable memory
PULA ;Deallocate local variable memory
RTS ;Return
AN1752

MOTOROLA 11

Application Note
Queues

A queue is a series of elements which accepts data from one end and
extracts data from the other end. An analogy for this data structure would
be a checkout line at the supermarket. The first people in are the first
people out. For this reason, it is considered a FIFO (first in, first out)
structure. This is useful when accessing data in the order it is received.
A queue will usually have a predefined maximum size.

Figure 3 illustrates a queue.

Figure 3. Queue

Reading
and Writing

The read operation of a queue is called "dequeue," and the write
operation is "enqueue." Two pointers are necessary for a queue, one for
the head of the line, and one for the tail. For an enqueue operation, after
checking the size of the queue, the data is stored at the location pointed
to by the "put" pointer, and the put pointer is adjusted. For a dequeue
operation, the data is read from the "get" pointer location, and the pointer
is adjusted.

Queues usually have a fixed size, so it is important to keep track of the
number of items in the queue. This can be done with a variable
containing the size of the queue or with pointer arithmetic.

’PUT’ POINTER

QUEUE BOTTOM

QUEUE TOP$50

$51

$52

$53

$54

$55

$57

$56

DATA 5

DATA 2

DATA 1

DATA 3

DATA 4

ADDRESS

QUEUE GROWS
IN THIS

DIRECTION

DATA
’GET’ POINTER

EMPTY

EMPTY

EMPTY

DEQUEUE FROM

ENQUEUE AT
AN1752

12 MOTOROLA

Application Note
Queues
Queue Errors As with the stack structure, a queue can be subject to underflow and
overflow errors. The write, or "enqueue" operation, should be non-
destructive and should error if the queue is full. The read, or "dequeue"
operation, should be destructive (remove the data element) and should
error if the queue is empty.

Queue
Applications

A practical application of a FIFO queue is for a data buffer. Queues can
be used as buffers for transmitted or received data and for use with
printers or serial communication devices.

Listing 5. Queue Example shows an example of queue software. A
good application for this would be to store data received from the SIOP
(serial input/output port) for processing later.

Listing 5. Queue Example
*---
* Illustrates an implementation of a queue For the 705P6A
*---
* Register definitions

* Memory map definitions
RAMSPACE EQU $50
ROMSPACE EQU $100
RESETVEC EQU $1FFE

* Queue data structure definitions
* These three equates defines the data structure
* To change the queue, change the data structure,
* and not the code.
QMAX EQU !4 ;Maximum Q size
QTOP EQU $A0 ;Top of Q array
QBOT EQU QTOP+QMAX-1 ;Bottom of Q array

* RAM variables
ORG RAMSPACE

TempA RMB 1
TempX RMB 1

GetPtr RMB 1 ;8-bit pointer
PutPtr RMB ;8-bit pointer
QCount RMB 1 ;Counter for Q size
AN1752

MOTOROLA 13

Application Note
*---
* Start of program code
*---

ORG ROMSPACE
Start QU *
InitQ LDA #QTOP ;Initialize Q pointers and variables

STA GetPtr
STA PutPtr
CLR QCount

*---
* Write and read from the Q
* A good application of this is to place bytes received
* from the SCI into the queue, and retrieve them later
*---

JSR DeQ
LDA #$FF
JSR EnQ
SR EnQ
JSR EnQ
JSR EnQ
JSR EnQ
JSR DeQ
SR DeQ
LDA #$55
JSR EnQ
JSR EnQ

Loop BRA *

*---
* Subroutines
*---
*---
* EnQ - enqueues a data byte passed in accumulator A
* Checks for a full Q, and returns a set carry bit if full.
* Otherwise returns a cleared carry bit on successful enqueue.
*---
EnQ STX TempX Save X register contents

LDX QCount ;Check for a full Q
CMPX #QMAX
BEQ QFull ;Q full error
LDX PutPtr
STA 0,X ;Store the data in A
CMPX #QBOT ;Check for wrap
BEQ WrapPut ;Wrap the put pointer
INCX ;Adjust the put pointer
BRA EnQDone

WrapPut LDX #QTOP
;Successful enqueue
AN1752

14 MOTOROLA

Application Note
Queues
EnQDone STX PutPtr ;Store new put pointer
LDX TempX ;Restore X register
INC QCount ;Increment count variable
CLC ;Clear carry bit
RTS ;Return

;Unsuccessful enqueue
QFull LDX TempX ;Restore X register

SEC ;Set carry bit
RTS ;Return

*---
* DeQ - Dequeue a byte from the queue, and return the byte in the accumulator A.
* If the queue is empty,
* return a set carry bit to indicate an error. Otherwise,
* return a clear carry bit and the data in A.
*---
DeQ STX TempX ;Save X register contents

LDX QCount ;Check for empty Q
CMPX #$00
BEQ QEmpty
LDX GetPtr
LDA 0,X
CMPX #QBOT ;Check for wrap condition
BEQ WrapGet
INCX
BRA DeQDone

WrapGet LDX #QTOP
;Successful dequeue

DeQDone STX GetPtr ;Record new get pointer
LDX TempX ;Restore X register
DEC QCount ;Decrement Q counter
CLC ;Clear carry bit
RTS ;Return

;Unsuccessful dequeue
QEmpty LDX TempX ;Restore X register

SEC ;Set carry bit
RTS ;Return

*--
* Vector definitions
*--

ORG RESETVEC
FDB Start
AN1752

MOTOROLA 15

Application Note
MACQ (Multiple Access Circular Queue)

A multiple access circular queue (or circular buffer) is a modified version
of the queue data structure. It is a fixed-length, order-preserving data
structure, and always contains the most recent entries. It is useful for
data flow problems, when only the latest data is of interest. Once
initialized it is always full, and a write operation always discards the
oldest data.

Figure 4 depicts a MACQ.

Reading
and Writing

After being initially filled, a write operation will place new data at the top
of the MACQ, and shift existing data downward. The last byte will be
discarded, so the result is the latest data existing in the buffer.

A read operation is non-destructive and can return any number of data
bytes desired from the MACQ.

Figure 4. Result of a MACQ Write

DATA 4

DATA 7

DATA 8

DATA 6

DATA 5

$50

$51

$52

$53

$54

$55

$57

$56

DATA 5

DATA 8

NEW DATA

DATA 7

DATA 6

ADDRESSDATA

DATA 4

DATA 3

DATA 2

DATA 3

DATA 2

DATA 1

OLDEST DATA DISCARDED

LATEST DATA HERE
AN1752

16 MOTOROLA

Application Note
MACQ (Multiple Access Circular Queue)
Applications A MACQ is useful for data streams which require the latest data and can
afford to have a destructive write operation. For example, to predict the
weather a forecaster might use temperature readings from the last five
days to predict the next day’s temperature. Daily temperature readings
can be recorded in a MACQ, so the latest data is available.

MACQs are also useful for digital filters. For example, they can be used
to calculate a second derivative, running average, etc.

Example Listing 6. MACQ illustrates the implementation of a MACQ or circular
buffer. This could be effectively used for storing A/D converter readings.
In this way, the latest A/D conversion results would be accessible
through the circular buffer.

Listing 6. MACQ
*---
* Illustrates an implementation of a multiple-access circular queue. (MACQ)
* The MACQ is a fixed-length, order-preserving, indexable data structure.
* Once initialized, the MACQ is always full.
* A write to the MACQ is destructive, discarding the oldest data.
* A read from the MACQ is non-destructive. For the 705P6A
*---
* Register definitions

* Memory map definitions
RAMSPACE EQU $50
ROMSPACE EQU $100
RESETVEC EQU $1FFE

* MACQueue data structure definitions
* These three equates defines the data structure
* To change the queue, change the data structure,and not the code.
QSIZE EQU 8 ;Maximum Q size
QTOP EQU $A0 ;Top of Q array
QBOT EQU QTOP+QSIZE-1 ;Bottom of Q array

* RAM variables
ORG RAMSPACE

TempA RMB 1
TempX RMB 1
TempData RMB 1
QPtr RMB 1 ;8-bit pointer
AN1752

MOTOROLA 17

Application Note
*---
* Start of program code
*---

ORG ROMSPACE
Start EQU *
InitQ LDA #QBOT ;Initialize Q pointer

STA QPtr

*---
* Write and read from the MACQ
* A useful application of this would be to store A/D converter readings, so the latest
* n readings are available.
*---

LDA #$55
JSR WriteQ
LDA #$56
JSR WriteQ
LDA #$57
JSR WriteQ
LDA #$58
JSR WriteQ
LDA #$AA
JSR WriteQ
LDA #$AB
JSR WriteQ
LDA #$AC
JSR WriteQ
LDA #$AD
JSR WriteQ
JSR WriteQ
LDA #0
JSR ReadQ
LDA #1
JSR ReadQ
LDA #2
JSR ReadQ

Loop BRA *

*---
* Subroutines
*---
*---
* WriteQ, A contains data to be written write is destructive on full Q, once
initialized Q is always full.
*---
WriteQ STX TempX ;Store X register value

LDX QPtr ;Load Q pointer
CMPX #QTOP-1 ;See if Q is full
BEQ QFull
STA 0,X ;Store data to Q
AN1752

18 MOTOROLA

Application Note
Tables
CX ;Decrement pointer
STX QPtr ;Store pointer
BRA WQDone

* Once MACQ is initialized, it's always full
QFull STA TempData

LDX QBOT-1 ;Start shifting data down
SwapLoop LDA 0,X

STA 1,X
DECX
CMPX #QTOP
BHS SwapLoop
LDX #QTOP
LDA TempData
STA 0,X

WQDone LDX TempX
RTS

*---
* ReadQ
* A contains queue index location to be read returns value in A
*---
ReadQ STX TempX
 ADD #QTOP ;A = A (index) + QTOP pointer
 TAX ;X = address of desired value
 LDA 0,X
 RTS

*---
* Vector definitions
*---
 ORG RESETVEC
 FDB Start

Tables

A table can be viewed as a vector of identically structured lists. A table
is a common way of storing "lookup" data, such as display data or vector
bytes.

Figure 5 shows an example of a table.
AN1752

MOTOROLA 19

Application Note
Figure 5. Table Representation

A table is commonly used to look up information. Table entries can be
accessed with an offset from the base address of the table. Therefore, a
read from a table is typically done by computing the offset of the desired
data and accessing it using an indexed addressing mode.

Table Applications The table data structure is common in MCU applications. One way of
using tables is to perform character conversions. For example, a table
can be used to convert binary numbers to BCD equivalents. For LCD
(liquid crystal display) displays, an ASCII character byte may need to be
converted to segment bitmaps for the display. A table could be used for
this purpose.

Another application of a table is a "jump" table. This is a table of vector
values which are addresses to be loaded and vectored to. Some
program parameter can be converted to an offset into a jump table, so
the appropriate vector is fetched for a certain input.

For example, in their memory maps Motorola MCUs have a built-in
vector table, used for interrupt and exception processing. These vector
tables allow preprogrammed addresses to be defined for certain MCU
exceptions. When an exception occurs, a new program counter value is
fetched from the appropriate table entry.

$50

$51

$52

$53

$54

$55

$57

$56

$1200

$0500

$0100

$0800

$0090

ADDRESSDATA

$2200

$0100

$0100

POINTER

TOP-OF-TABLE
AN1752

20 MOTOROLA

Application Note
Tables
Another way of utilizing the table data structure is to store predefined
values for lookup. An example of this is storing interpolation data in a
table, to perform mathematical functions. This use of a table is
documented in the application note, M68HC08 Integer Math Routines,
Motorola document order number AN1219.

Another example involves using a table of sinusoidal values to produce
sine wave output as in the application note Arithmetic Waveform
Synthesis with the HC05/08 MCUs, Motorola document order number
AN1222. If an equation to calculate data is CPU-intensive and can be
approximated with discrete values, these values can be precalculated
and stored in a table. In this way, a value can be quickly fetched, saving
CPU time.

Table Example Listing 7. Table is an example of the use of tables to convert ASCII data
to LCD segment values.

Listing 7. Table
*---
* Code segment example of using a table to store LCD segment values
* Could be used when 2 data registers define the segment values for a display position.
* Takes in an ASCII character, converts it to an offset into the table of segment
* values, and uses the offset to access the segment bitmap values.
*---
Loop LDA Character ;Load an ASCII character

JSR Convert ;Convert the character
TAX ;Offset into table is in A
LDA 0,X ;Load the first byte
STA LCD1 ;Store to data register
LDA 1,X ;Load the second byte
STA LCD2 ;Store to data register
BRA Loop ;Repeat

*---
* Convert ASCII character byte in A to an offset value into the table of LCD segment
* values. Valid ASCII values are (decimal): 32-47, 48-57, 65-90
*---
Convert CMP #!48 ;Check for "special" character

BLO Special
CMP #!65 ;Check for numeric character
BLO Numeric

Alpha CMP #!90 ;Check for invalid value
BHI ConvError
AN1752

MOTOROLA 21

Application Note
SUB #!39 ;Convert to table offset
BRA ConvDone

Special CMP #!32 ;Check for invalid value
BLO ConvError
SUB #!32 ;Convert to table offset
BRA ConvDone

Numeric CMP #!57 ;Check for invalid value
BHI ConvError
SUB #!32 ;Convert to table offset
RA ConvDone

ConvError CLRA ;Invalid value shows as blank
ConvDone ROLA ;Multiply offset by 2

RTS ;2 bytes data per LCD position

*---
* Lookup table of LCD segment values for ASCII character values
* Some characters can not be displayed on 15-segment LCD, so they are marked as
* invalid, and will be displayed as a blank space.
*---
Table FDB $0000 ;' '

FDB $0000 ;'!' INVALID
FDB $0201 ;'"'
FDB $0000 ;'#' INVALID
FDB $A5A5 ;'$'
FDB $0000 ;'%' INVALID
FDB $0000 ;'&' INVALID
FDB $0001 ;'''
FDB $000A ;'('
FDB $5000 ;')'
FDB $F00F ;'*'
FDB $A005 ;'+'
FDB $0000 ;',' INVALID
FDB $2004 ;'-'
FDB $0800 ;'.'
FDB $4002 ;'/'
FDB $47E2 ;'0'
FDB $0602 ;'1'
FDB $23C4 ;'2'
FDB $2784 ;'3'
FDB $2624 ;'4'
FDB $21A8 ;'5'
FDB $25E4 ;'6'
FDB $0700 ;'7'
FDB $27E4 ;'8'
FDB $27A4 ;'9'
FDB $2764 ;'A'
FDB $8785 ;'B'
FDB $01E0 ;'C'
FDB $8781 ;'D'
FDB $21E4 ;'E'
FDB $2164 ;'F'
AN1752

22 MOTOROLA

Application Note
Linked Lists
FDB $05E4 ;'G'
FDB $2664 ;'H'
FDB $8181 ;'I'
FDB $06C0 ;'J'
FDB $206A ;'K'
FDB $00E0 ;'L'
FDB $1662 ;'M'
FDB $1668 ;'N'
FDB $07E0 ;'O'
FDB $2364 ;'P'
FDB $07E8 ;'Q'
FDB $236C ;'R'
FDB $25A4 ;'S'
FDB $8101 ;'T'
FDB $06E0 ;'U'
FDB $4062 ;'V'
FDB $4668 ;'W'
FDB $500A ;'X'
FDB $9002 ;'Y'
FDB $4182 ;'Z'

EndTable EQU *-Table ;End of table label

Linked Lists

A list is a data structure whose elements may vary in precision. For
example, a record containing a person’s name, address, and phone
number could be considered a list. A linked list is a group of lists, each
of which contains a pointer to another list.

Figure 6 represents a linked list.
AN1752

MOTOROLA 23

Application Note
Figure 6. Linked List

Each list in the structure contains the same type of information, including
a link to the next item in the list. The link might be an absolute address
or an offset from some base address. In a doubly linked list, pointers are
kept to both the next and the previous item in the list. A linked list can be
traversed easily by simply following the pointers from one list to the next.

Linked List
Applications

A linked list is used traditionally to define a dynamically allocated
database, in which the elements can be ordered or resorted by adjusting
the links. However, in a small microcontroller, there are more
appropriate applications of linked lists.

A linked list can be used as a structure for a command interpreter. Each
command could contain the string of characters, an address of a
subroutine to call on that command, and a link to the next command in
the linked list. In this way, a command string could be input, searched for
in a linked list, and appropriate action taken when the string is found.

State Machines Another useful application of a linked list is to define a state machine. A
state machine can be represented by a discrete number of states, each
of which has an output and pointers to the next state(s). See Figure 7 .

NEXTPTRA NEXTPTRCNEXTPTRB

DATA1A

DATA2A

DATA3A

DATA4A

DATA1B

DATA2B

DATA3B

DATA4B

DATA1C

DATA2C

DATA3C

DATA4C

LISTA LISTB LISTC
AN1752

24 MOTOROLA

Application Note
Linked Lists
Figure 7. State Machine

A state machine can be considered a Mealy or a Moore machine. A
Mealy machine’s output is a function of both its inputs and its current
state. A Moore machine has an output dependent only on its current
state.

This state machine model can be useful for controlling sequential
devices such as vending machines, stepper motors, or robotics. These
machines have a current internal state, receive input, produce output,
and advance to the next state.

One can first model a process as a sequential machine, then convert this
behavior to a linked-list structure and write an interpreter for it. An
important goal is to be able to make modifications to the state machine
by changing the data structure (linked list) and not the code.

State Machine
Example

As an example, consider a traffic light controller which determines the
light patterns for an intersection. Two light patterns are needed, one for
the north/south directions and one for the east/west directions. Consider
that the bulk of traffic travels on the north/south road, but sensors are
placed at the east/west road intersection to determine when traffic needs
to cross. See Figure 8 .

STATE A STATE B

STATE CSTATE D

INPUT/OUTPUT

1/0

0/1

1/1

0/1

1/0

0/0

1/1

0/0
AN1752

MOTOROLA 25

Application Note
Figure 8. Traffic Light Controller Example

This example can be modeled as a Moore state machine, with its output
a function of its current state. The next state is a function of the current
state and the state of the input. Figure 9 shows a state graph for this
example. The initial state will be a green light in the north/south direction
and a red light in the east/west direction. The controller remains in this
state, until input is seen in the east/west direction. The flow continues as
shown in the diagram. The output shown in the diagram is a pattern for
the light array to activate the lights for the state.

N

INPUTINPUT

G Y R
AN1752

26 MOTOROLA

Application Note
Linked Lists
Figure 9. Traffic-Light Controller State Graph

Simulation This example can be simulated using LEDs and a 68HC705P6A MCU.
A pushbutton switch can be used to simulate the input sensor. Figure 10
illustrates the simulation circuit. Using six bits of an output port, a pattern
can be generated to display the appropriate north/south and east/west
lights (LEDs). Table 1 shows the bitmap in this application.

NSG NSY

NSREWY

OUTPUT = 11011101

DELAY = 5

OUTPUT = 11110101

DELAY = 5

OUTPUT = 11110011

DELAY = 5

OUTPUT = 11011110

DELAY = 10

INPUT = 1

INPUT = 1 OR 0

INPUT = 1 OR 0

INPUT = 1 OR 0

INPUT = 0
AN1752

MOTOROLA 27

Application Note
Figure 10. Circuit Simulation of Traffic-Light Controller

With the hardware in place, all that is left is to define the state machine
in software. This can be done by implementing a linked-list data
structure and the code to access and interpret the machine.

For this particular example, each list in the data structure defines the
current state of the traffic light. Each list contains:

1. The byte which is the bitmap for the lights.

2. A delay value; the time the controller remains in the state

3. The next state pointer for an input of 0

4. The next state pointer for an input of 1

Table 1. Traffic Light Bitmap for Port A

Bit Position 7 6 5 4 3 2 1 0

Meaning
Not used North/South Signal East/West Signal

X X G Y R G Y R

R

Y

G

R

Y

G

VDD

0.1 µF

1 K
1 K

74LS0474LS04

1 K

PA0

PA1

PA2

PA3

PA4
PA5

PD7

INPUT

OUTPUTSOUTPUTS

705P6A MCU
AN1752

28 MOTOROLA

Application Note
Linked Lists
The main loop of the program should execute the program flow charted
in Figure 11 . The software for this simulated traffic light controller is
documented in Listing 8. Traffic Controller State Machine .

Figure 11. State Machine Program Flow

Listing 8. Traffic Controller State Machine
*---
* Traffic light controller example Illustrates a linked list implementation of a state
* machine For the 705P6A
*---
* Register definitions
PORTA EQU $00
PORTD EQU $03
DDRA EQU $04
DDRD EQU $07

* Memory map definitions
RAMSPACE EQU $50
ROMSPACE EQU $100
RESETVEC EQU $1FFE
* RAM variables

ORG RAMSPACE

LOAD INITIAL
STATE

DELAY FOR

GIVEN VALUE

GET INPUT
INPUT = 1INPUT = 0

LOAD NEXT

STATE POINTER

(OFFSET)

OUTPUT

LIGHT

PATTERN

LOAD NEXT

STATE POINTER

(OFFSET)
AN1752

MOTOROLA 29

Application Note
TempA RMB 1
TempX RMB 1

*---
* Start of program code
*---

ORG ROMSPACE
Start LDA #$00

STA PORTA ;Predefine output levels
LDA #$FF
STA DDRA ;Make Port A all outputs
BCLR 7,PORTD ;Make Port D pin 0 an input

LDX #INITST ;Index initial state
Loop LDA STATES+LIGHTS,X ;Get light pattern

STA PORTA ;Output light pattern
LDA STATES+DELAY,X ;Get delay in seconds
JSR SecDelay ;Cause delay
BRCLR 7,PORTD,In0 ;Check for input of 0

In1 LDX STATES+NEXT0,X ;Get next state offset
BRA Loop ;(input = 1)

In0 LDX STATES+NEXT1,X ;Get next state offset
BRA Loop ;(input = 0)

*---
* DATA STRUCTURE FOR STATE MACHINE LINKED LIST (05)
* Offsets and base address scheme is adequate for a small table (<255 bytes)
*---
LIGHTS EQU 0 ;Offset for light pattern
DELAY EQU 1 ;Offset for time delay
NEXT0 EQU 2 ;Offset for pointer 0
NEXT1 EQU 3 ;Offset for pointer 1
STATES EQU * ;Base address of states
INITST EQU *-STATES ;Initial state offset
* North/South green light, East/West red light
NSG EQU *-STATES ;Offset into STATES

FCB %11011110 ;Output for state
FCB !10 ;Delay for state
FCB NSG ;Next state for input of 0
FCB NSY ;Next state for input of 1

* N/S yellow light, E/W red light
NSY EQU *-STATES

FCB %11101110
FCB !5
FCB NSR
FCB NSR

* N/S red light, E/W green light
NSR EQU *-STATES

FCB %11110011
FCB !5 ;Delay for state
FCB EWY
AN1752

30 MOTOROLA

Application Note
Linked Lists
FCB EWY
* E/W yellow light, N/S red light
EWY EQU *-STATES

FCB %11110101
FCB !5 ;Delay for state
FCB NSG
FCB NSG

*---
* Delay subroutines
*---
* Cause a delay of ~(1 second * Accumulator value) @ fop = 1MHz
*---
SecDelay CMP #$00

BEQ SecDone
JSR Delay0
JSR Delay0
DECA
BRA SecDelay

SecDone RTS

*---
* Cause a delay of ~1/2 of a second
*---
Delay0 STX TempX

LDX #$B2
DLoop0 CMPX #$00

BEQ DDone0
JSR Delay1
DECX
BRA DLoop0

DDone0 LDX TempX
RTS

*---
* Cause about 2.8msec delay @ fop of 1MHz
*---
Delay1 STA TempA

LDA #$FF
DLoop1 CMP #$00

BEQ DDone1
DECA
BRA DLoop1

DDone1 LDA TempA
RTS

*---
* Vector definitions
*---

ORG RESETVEC
FDB Start
AN1752

MOTOROLA 31

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Conclusion

The use of data structures is not necessarily limited to large, complicated
computers. Although the data structure is a powerful concept in such a
context, the same principles can be applied to smaller processors such
as 8-bit microcontrollers.

The code to implement these data structures does not necessarily have
to be complex or confusing. The goal of programming should be to
modularize commonly used functions, so that they may be reused in
other applications with a minimal amount of modification.

The appropriate use of data structure concepts can improve the static
and dynamic performance of an MCU application, without affecting its
portability or legibility.
AN1752/D

© Motorola, Inc., 1998

Mfax is a trademark of Motorola, Inc.

	Introduction
	Strings
	Storing Strings
	Accessing Strings
	Listing 1. String Storage Example
	Listing 2. String Access Example
	String Applications

	Stacks
	Stack Reading and Writing
	MCU Hardware Stack
	HC05 Stack
	HC08 Stack
	Stack Applications
	Listing 3. Software Stack
	Listing 4. Using the HC08 Stack Operations

	Queues
	Reading and Writing
	Queue Errors
	Queue Applications
	Listing 5. Queue Example

	MACQ (Multiple Access Circular Queue)
	Reading and Writing
	Applications
	Example
	Listing 6. MACQ

	Tables
	Table Applications
	Table Example
	Listing 7. Table

	Linked Lists
	Linked List Applications
	State Machines
	State Machine Example
	Simulation
	Listing 8. Traffic Controller State Machine

	Conclusion

