
MOTOROLA
SEMICONDUCTOR APPLICATION NOTE

Order this document
by AN1221/D

©MOTOROLA, INC., 1993 AN1221/D

Hamming Error Control Coding
Techniques with the HC08 MCU
by Mark McQuilken & Mark Glenewinkel

CSIC Applications

AN1221

INTRODUCTION

This application note is intended to demonstrate the use of error control coding (ECC) in a digital transmis-
sion system. The HC08 MCU will be used to illustrate the code development of this process. A message
frame consisting of a 4-bit data field with three parity bits will be encoded to allow the original four bits to be
recovered, even if any single bit is corrupted during the transmission and reception processes. This pro-
cess is based upon a class of linear error-correcting codes called Hamming codes. The process of using
time diversity is also discussed as a way to control burst errors in a transmission system.

BACKGROUND

MODEL FOR A DATA TRANSMISSION SYSTEM

Generally, the processing of digital data (in a whole system and/or within a system) can be modelled as a
generalized data transmission or storage system. Such a system consists of an information source, the
“channel” (medium or storage), and the destination device. Some possible specific implementations that fit
this generalized model are shown in Table 1 below:

There are many other systems that also fit this simplistic model of a data transmission system.

Problems with Data Transmission Systems

In a perfect world, data would be transmitted and received completely intact. In the real world, we
must often combat the effects of errors induced in our transmitted/received information. For example,
in the above-mentioned avionics system, if a command from the cockpit to release the weapons was
transmitted and corrupted so that the deployment electronics interpreted the message as “hold” rather

Table 1. Digital Data Transmission System Implementations

Example System Information Source Channel Destination

Personal computer CPU RAM or hard disk CPU or serial interface

Digital telephone Your digitized voice Telephone company’s wires
and switching system

Whoever you’re calling
(another telephone)

Stereo system Compact disc Laser optics and electronics Audio output (ultimately to
transducers like speakers)

Avionic weapon
development system

Cockpit command to
release weapon stores

Wiring/electronics between
cockpit and weapons

Electro-mechanical
assembly which activates
and deploys weapons

MOTOROLA AN1221/D
2

than “release,” the intended target may never be hit. A worse case would be the pilot wanting to abort
deployment and the “abort” command was corrupted by noise to become “release” at the deployment
assembly. A system must be built in a way to avoid disastrous effects of data corruption. ECC is the
field of study that deals with methods of coding information to reduce the effects of errors.

One of the general challenges facing the system designer is to implement ECCs without degrading the
data transfer rates too significantly. For example, one of the simplest ways to hedge against channel-
induced errors, is to specify a transmission protocol that requires multiple transmissions of the same data.
Such a protocol will reduce the effective rate of transmission by a factor equal to the number of
retransmissions per information block. Even if this retransmission strategy guaranteed that at least one of
the data blocks was correct at the receiver, there are two problems:

1) How will we know which of the data blocks is the correct one?

2) How do we make up for the channel bandwidth lost by transmitting the same data multiple times?

ECCs can actually be more effective in using the channel's existing bandwidth than the above scenario.
Instead of merely retransmitting data, ECCs take up some of the channel bandwidth (but less than
retransmissions) to send some data redundancies that may be used for the detection and, sometimes,
correction of corrupted received data.

Types of Noise

There are many types of ECCs. Each ECC has its own set of strengths and weaknesses. One important
aspect of all the codes is their ability or inability to deal with each of the error types: random channel
errors/noise, burst-type errors/noise, or a combination of each. The codes discussed in this presentation
(Hamming codes) are a class of algebraic codes that deal effectively with random channel noise. Burst
errors are typically longer in duration than random errors and thus require more robust code types to
prevent unrecoverable data. This application note also describes time-diversity coding used to prevent
burst-type noise. The technique of coupling time-diversity ECCs with random error ECCs can help
improve the performance of the ECC in the presence of burst errors.

One-way Data Transmission

In a system where only one-way communication is possible and precautions must be taken against data
corruption, error control codes must be employed by using forward error correction (FEC). FEC is
accomplished by employing codes that allow for “automatic” correction of specific types of errors induced
by noise in the channel and received by the receiver. Hamming codes are one of the simplest classes of
FEC codes and are characterized by the following traits:

— The number of parity-check symbols (bits) must be greater than or equal to 3. Let these symbols
be represented by the variable m.

— The number, k, of information symbols (bits) is:

k = 2m – m – 1

— The total length, n, of the code is:

n = 2m – 1

AN1221/D MOTOROLA
3

— Error correcting capability is exactly one symbol.

— The error detecting capability is all error patterns of two errors or less.

— The parity check matrix is:

H = [Im Qm,k]

where Im is an m x m identity matrix and Qm,k is the submatrix that consists of k columns which are of
weight two or more (i.e., have two or more ones in them).

—The generator matrix is:

G = [QTm,k Ik]

where Ik is a k x k identity matrix and QTm,k is the transpose of the submatrix Q that consists of m
columns and k rows.

Two-way Data Transmission

Error control for a two-way system can be accomplished with both error control coding as well as some
rational scheme of data retransmission. A system that utilizes retransmission of messages is said to use
an automatic repeat request (ARQ) protocol.

HAMMING ENCODING
HAMENC1 — HAMMING ENCODER #1, TABLE LOOK-UP
The 4-bit information word to be encoded is used as an index into a look-up table. A (7,4) Hamming code
represents a 7-bit word with four data bits and three code bits. A (7,4) Hamming code will have 24 (16)
different codeword possibilities. The 16-element look-up table consists of the pre-encoded (i.e., pre-
calculated) codewords. This is the speediest of the encoding techniques, but consumes a lot of memory
for anything except the smallest code length. For example, the next Hamming codeword size up from the
(7,4) Hamming shown in this example would be a (15,11) Hamming code according to the above
formulas. This means that the look-up table would have to be 211 (2,048) elements deep (a total of 4,096
bytes @ 2 bytes per element). The flowchart and HC08 assembly code for HAMENC1 is listed in
Appendix A.

HAMENC2 — HAMMING ENCODER #2, MATRIX CALCULATION
HAMENC2 actually performs the matrix arithmetic used to encode information into Hamming codewords.
This is done with the generator matrix, G, described earlier. The generator matrix consists of two
submatrices: a k x k identity matrix, Ik , and the transpose of matrix Q, QTm,k , where matrix Q consists of
k columns which are of weight two or more. The generator matrix used to generate the look-up table in
HAMENC1 is:

MOTOROLA AN1221/D
4

G = [QTm,k Ik]

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

G =

where m = 3 and k = 4.

The 4-bit information word is first bit-wise multiplied (logically anded) by each column in the generator
matrix. Each bit in each of the column products is then added together, modulo-2, to create a parity bit for
each product. An example of a 4-bit infoword and its generated codeword is given below.

G Matrix
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

1 0 1 0

Information
Word

=

 Code
 Word

0 0 1 1 0 1 0

The flowchart and HC08 assembly code for HAMENC2 is listed in Appendix B. Once an information word
is encoded, it may be transmitted over the channel for recovery by the HAMDEC routine explained next.

HAMMING DECODING
ERROR DETECTION AND CORRECTION OF RECEIVED CODEWORD
A 7-bit Hamming codeword will be decoded into the original 4-bit information word even with up to one bit
in the codeword being corrupted by the channel. This routine will use matrix math to recover the
information word. The parity-check matrix used in the HAMENC routine(s) is:

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

H =

The parity-check matrix has the property such that when a 7-bit codeword generated by the generator
matrix and uncorrupted by the channel is multiplied by the transpose of the parity-check matrix, HT , a
zero vector is obtained. The three-element result is called the syndrome. For uncorrupted data, the
syndrome should be a zero vector. An example is given below.

0 0 1 1 0 1 0
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

= 0 0 0

Syndrome

H Transpose
 MatrixCode

Word

AN1221/D MOTOROLA
5

Suppose that we transmit a code vector, v, and that an error occurs in the fourth bit position. This is the
same as adding a vector, e, to the codeword v where e looks like:

e = [0 0 0 1 0 0 0]

By multiplying the received vector by the transpose of the parity-check matrix, we obtain:

(v + e) HT = vHT + eHT = eHT

since vHT = 0.

The resultant non-zero vector, eHT, indicates a problem in the received codeword. As mentioned above,
this product of the received vector and the transpose of the parity-check matrix is called the syndrome.
An example of a corrupted codeword and its syndrome is given below.

0 0 1 0 0 1 0

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

= 1 1 0

Syndrome
 Code
 Word

 Corrupted
 Bit

H Transpose
 Matrix

The syndrome bit pattern of a single bit error will be the pattern of one row within HT.

The row number is numerically equivalent to the corrupted bit position in the received codeword. Thus,
by calculating the syndrome and obtaining a non-zero vector we have:

1) Identified that one or two errors have occurred.

2) In the case of a single bit error, we have identified the location of the error within the received
word.

The last item to be accomplished is to correct the identified error, which is accomplished by
complementing the bit position in the received codeword. The flowchart and HC08 assembly code for
HAMDEC is listed in Appendix C.

MOTOROLA AN1221/D
6

TIME DIVERSITY PACK AND UNPACK
SOME LIMITATIONS OF HAMMING PERFORMANCE
Although the Hamming ECC allows recovery of “mildly” corrupted codewords, it is limited in its
effectiveness against some “real world” corruptions. It was stated earlier that Hamming ECCs are useful
in combating the effects of random noise. This applies only for random bit corruptions that do not exceed
one bit time per codeword since Hamming codes can only correct up to one bit error per codeword.
Where burst errors occur—noise corruptions typically considered longer in duration than random noise—
other FEC types are the preferred antidote. However, the FECs useful for combating burst noise require
considerable processing power and, as such, should only be used under duress.

HOW TO IMPROVE HAMMING PERFORMANCE
Time-diversity coding is another way to combat the effects of burst noise. By combining bits of many
codewords into a transmission packet, it is possible to limit the effect of long noise bursts on a given
codeword. Specifically, we view a collection of eight Hamming-encoded codewords arranged in RAM like
this:

a07 a06 a05 a04 ... a00
a17 a16 a15 a14 ... a10
a27 a26 a25 a24 ... a20

a77 a76 a75 a74 ... a70

where each element in the matrix, aij , is a single bit within each byte-wide codeword.

In the case of a (7,4) Hamming code, the eighth bit (bit 7) of each codeword is zeroed. A matrix is used
to represent the data bits as they would appear in RAM, that is, the first row is the first data byte with the
LSB to the right and MSB to the left, the second row is the next data byte, etc.

By taking one bit from each of the eight Hamming-encoded words and assembling eight bytes where
each byte is made of one bit from each of the original codewords, we distribute the information from one
codeword over eight different transmissions:

a07 a17 a27 a37 ... a77
a06 a16 a26 a36 ... a76
a05 a15 a25 a35 ... a75

a00 a10 a20 a30 ... a70

If a “deep fade” in the channel should take out an entire transferred byte, only one bit within each
codeword would be affected because each codeword is effectively spread over many data transfers. As
shown in the above matrix, the first row (i.e., first data byte to be transferred) consists of the eighth bit
position (MSB) of the pre-diversity coded data matrix. If this first row was transmitted and completely
corrupted on the receive end, only one bit from each of the pre-diversity encoded codewords would be
corrupted. This allows the relatively modest Hamming decoder to detect and completely correct all of the
corrupted codewords despite losing one entire byte of data out of eight.

AN1221/D MOTOROLA
7

TDPACK — TIME DIVERSITY PACK AND UNPACK
TDPACK transposes an 8 x 8 matrix consisting of 8 bits wide (eight columns) and 8 bytes deep (eight
rows). Normally such a matrix would be transmitted, following convention, the first row, most significant
bit first. Each subsequent row would be sequentially transmitted, again with MSB first. By executing
TDPACK on such an array of bits, the first byte to be transferred would actually contain the seventh bit
(MSB) of each byte. Each subsequent byte of data transmitted out of this transposed version of the
original data matrix actually only contains one bit from each of the original data bytes. In this way, each
byte transmission contains only one bit from each of the original data bytes. Should anything happen to
corrupt up to an entire eight bits of transmission, no more than one bit per original data byte would be
affected.

After the codeword is received, it must be unpacked. The same routine used to pack (transpose) the
matrix is used to unpack it to its original order. It is the output of the transpose that would be used as the
input to an ECC decode routine (such as HamDec). The flowchart and HC08 assembly code for
TDPACK is listed in Appendix D.

MOTOROLA AN1221/D
8

APPENDIX A
HAMENC1 FLOWCHART AND CODE LISTING

Begin HAMENC18

Do table look-up
of CodeWord

ACCA = CodeWord

End

Enter with X-reg =
LSN (least sig nibble)

of InfoWord

AN1221/D MOTOROLA
9

**
*
* Program Name: HAMENC1.ASM (Hamming Encoder #1 - Table Look-up)
* Revision: 1.00
* Date: January 21,1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM08
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 0.50 12/15/92 M.A. McQuilken
* HC05 version to be translated to HC08 code
*
* Rev 0.60 01/21/93 M.R. Glenewinkel
* Added more comments
*
* Rev 1.00 01/22/93 M.R. Glenewinkel
* HC08 version
*
**
*
* Program Description:
* This routine will encode a four-bit info word into a (7,4)
* Hamming encoding codeword.
*
* This source code is an example of using a table look-up
* method to encode a four bit info word to a seven bit code
* word. For a more detailed description of the process of error
* control codes and Hamming codes in particular, please
* refer to Motorola Application Note 1221.
* This routine consists of only one instruction, a
* look-up table fetch, where the encoding has been already
* done and inserted into this look-up table.
*
* "info word" is the word you want to encode
* "codeword" is an encoded info word
*
* TASK DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* X Enter routine with
* X-reg=LSN of info
* word.
* ACCA Leave routine with
* 7-bit codeword in here

MOTOROLA AN1221/D
10

*
*
* LOCAL DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* ACCA Misc. computational
* use.
*
**
*
* Register and Variable Equates
*
* None
*
**
*
* Memory
*
* None
*
**

 ORG $1000 ;beginning of program area
START EQU *

**

* Main Routine

HAMENC1 lda CodeWords,X ;ACCA <- (CodeWords+X)
 ;X contains the offset
 ; from CodeWords

DONE nop ;done !!!
 bra DONE

**

AN1221/D MOTOROLA
11

* Tables

 ORG $2000
CodeWords FCB %00000000
 FCB %01010001
 FCB %01110010
 FCB %00100011
 FCB %00110100
 FCB %01100101
 FCB %01000110
 FCB %00010111
 FCB %01101000
 FCB %00111001
 FCB %00011010
 FCB %01001011
 FCB %01011100
 FCB %00001101
 FCB %00101110
 FCB %01111111

**

* Vector Setup

 ORG $FFFE
 DW START ;set up reset vector

**

MOTOROLA AN1221/D
12

APPENDIX B
HAMENC2 FLOWCHART AND CODE LISTING

Begin HAMENC2

Enter with
ACCA = LSN of

InfoWord

Init WordCntr to 0;
Init CodeWord to 0

Store InfoWord into
temporary storage

Load X-reg with
product

Fetch parity for
product from

ParaTee look-up table

Parity = 0
???

A

A

Find which bit to set
in CodeWord;

fetch current WordCntr

WordCntr < 7 ?

Fetch InfoWord from
temporary storage;

fetch current WordCntr

Increment WordCntr

N

Y

Done

N

Y

Logically AND
InfoWord with the
generator matrix

look-up table

Set the corresponding
bit in the CodeWord

AN1221/D MOTOROLA
13

**
*
* Program Name: HAMENC28.ASM (Hamming Encoder - Matrix Calculation)
* Revision: 1.00
* Date: January 21,1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM08
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 0.50 12/15/92 M.A. McQuilken
* HC05 version to be translated to HC08 code
*
* Rev 0.60 01/20/93 M.R. Glenewinkel
* Fixed logic bugs
*
* Rev 1.00 01/22/93 M.R. Glenewinkel
* HC08 version
*
**
*
* Program Description:
*
* This routine will encode a four-bit info word into a (7,4)
* Hamming encoding codeword.
*
*
* This routine differs from HAMENC1 not in results, but in
* method. Whereas HAMENC1 was basically an easy look-up of
* pre-encoded (7,4) Hamming codewords, HAMENC2 actually
* performs the matrix arithmetic to encode the 4-bit info word
* input. Fortunately when working with modulo arithmetic
* (particularly mod-2), things like multiplication and such
* are reduced to fairly easy functions.
*
* This routine follows this basic overall flow: Workspace is
* cleared, the info word is first multiplied, each bit in the
* product is then added together (this is effectively
* calculating the parity of the product), the actual final
* codeword is constructed one-bit at a time, at that point
* the next row from the generator matrix is fetched and this
* process repeated until all of the generator matrix rows have
* been combined with the info word.
*

MOTOROLA AN1221/D
14

* For a more detailed description of the process of error
* control codes and Hamming codes in particular, please
* refer to Motorola Application Note 1221.
*
* TASK DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* ACCA Enter routine with
* ACCA=LSN of info
* word (4-bit).
* ACCA Leave routine with
* 7-bit codeword in
* here.
*
*
* LOCAL DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* CodeWord CodeWord Yup, you guessed it
* ...this is where we
* keep a temp version
* of the codeword.
* WordCntr WordCntr Keeps track of the
* GenMatrix row that
* is combined with
* the info word.
* ACCA ACCA Misc. computational
* use.
* X X Misc. computational
* use.
*
*
**
*
* Register and Variable Equates
*
* None
*
**
*
* Memory
*
 org $50
CodeWord RMB 1
InfoWord RMB 1
WordCntr RMB 1
*
**

AN1221/D MOTOROLA
15

 ORG $1000
START EQU * ;beginning of program area

**

* Main Routine

* As stated in the header, the first place to start is
* the clearing of data space:

HamEnc2 clr WordCntr
 clr CodeWord

* Next, before we begin the process of multiplying and adding the
* codeword with the info word, we need to save a copy of the info word
* (remember, we are entering the routine with ACCA having the
* info word):

SaveInfo sta InfoWord

* Now we begin the fun stuff...doing the actual multiplication and
* addition that is required to this super-fun Hamming stuff. Each
* multiplication with binary data is actually a logical AND on a
* bitwise basis:

GetInfoWord lda InfoWord ;get the info word for the
 ; multiplication.
 ldx WordCntr ;get the current row count
 ; into the generator matrix.

 and GenMatrix,X ;Go forth and multiply...

* Well...that wasn't so bad, was it? Now that the multiplication
* is complete we begin the task of adding the product, bit-by-bit
* (so to speak). Rather than go through the actual tedium of adding
* each bit within the product one bit at a time, I've made a look-up
* table that has it done for you. It even has the clever name of
* PARATEE to remind you that the process of adding bits within a
* byte is determining the byte's parity:

 tax ;the byte to have parity
 ; encoded resides in ACCA.

CalcParity lda ParaTee,X ;get the parity value
 ; from LUT.

MOTOROLA AN1221/D
16

* As mentioned in the header, the actual codeword is constructed
* one-bit at a time. For each multiplication and addition we do,
* a single bit within the final codeword results. At this point,
* then, we must construct another bit of the codeword from the
* last multiplcation and addition:

MakeCW cbeqa #0,BumpCntr1 ;if parity is odd, then
 ; we do nothing to the
 ; final codeword.
 ;here's the branch to do
 ; nothing, otherwise
 ; we add a positive bit
 ; to the correct position
 ; in the codeword.

* If we've made it here, then we know to set a bit in the codeword.
* So even though the value in ACCA gets "stepped on" in this part
* of the routine, the contents of ACCA have done its job and got
* us to this point. A look-up table (called CoSet) was used as the
* mechanism to construct the codeword one bit at time. CoSet
* contains only one bit=1...in each case only the bit that we wish
* to set within the byte:

 ldx WordCntr ;WordCntr has the current bit
 ; position in it.
 lda CoSet,X ;get bit (in correct position)
 ; to be set.

 ora CodeWord ;set the bit.
 sta CodeWord ;modify CodeWord for next use.

* This completes a single cycle in the process of encoding an info
* word into a bit within the final codeword. All that is left to do
* is to check to see if we have completed the entire codeword. If
* we haven't, then pointers get modified so we can do the next one:

BumpCntr1 inc WordCntr ;inc current row/bit position
 lda WordCntr ;load updated WordCntr
 cmp #7 ;check to see if we're done.
 blo GetInfoWord ;Go back, Jack, and
 ; do it again...

DONE nop ;done !!!
 bra DONE

**

AN1221/D MOTOROLA
17

* Tables

GenMatrix FCB %00001011
 FCB %00001110
 FCB %00000111
 FCB %00001000
 FCB %00000100
 FCB %00000010
 FCB %00000001

ParaTee FCB $00
 FCB $FF
 FCB $FF
 FCB $00
 FCB $FF
 FCB $00
 FCB $00
 FCB $FF
 FCB $FF
 FCB $00
 FCB $00
 FCB $FF
 FCB $00
 FCB $FF
 FCB $FF
 FCB $00

CoSet FCB %01000000
 FCB %00100000
 FCB %00010000
 FCB %00001000
 FCB %00000100
 FCB %00000010
 FCB %00000001

**

* Vector Setup

 ORG $FFFE
 DW START ;set up reset vector

**

MOTOROLA AN1221/D
18

APPENDIX C
HAMDEC FLOWCHART AND CODE LISTING

Begin HAMDEC

Enter with
CodeWord in

ACCA

Logically AND CodeWord
with ColumCntr row of

HTranspose

Calculate parity;
Go to CALCPARITY

Construct syndrome;
Go to

 CALCSYNDROME

Store CodeWord to
temporary storage

ColumCntr = 0
Clear syndrome byte

Get CodeWord from
temporary storage

Increment ColumCntr

ColumCntr < 3
?

A

A

Y

Error correction;
Go to CHKSYNDROME

End HAMDEC

N

Store ACCA to InfoWord

AN1221/D MOTOROLA
19

Begin CALCPARITY

Enter with
ACCA = CodeWord

• H Transpose

Clear parity byte

Init BitCounter to 8

Rotate left ACCA thru
carry bit

Carry = 1
?

Complement parity byte

Y

BitCounter = 0
?

End PARCALC

B

B

N

Decrement BitCounter

Load ACCA with parity

Y

MOTOROLA AN1221/D
20

Begin
CALCSYNDROME

Enter with
ACCA = bytewide

parity

ACCA = $FF
?

Load X with ColumCntr;
Load ACCA with value

from COSET table

Y

End
CALCSYNDROME

Set ColumCntr bit in
syndrome

AN1221/D MOTOROLA
21

Begin
CHKSYNDROME

Use syndrome as
pointer into error
table (CoSet289),

error pattern

Logically-AND
corrected CodeWord

with $0F

End CHKSYNDROME

Fetch syndrome

Exclusive-Or error
pattern with CodeWord

MOTOROLA AN1221/D
22

**
*
* Program Name: HAMDEC8.ASM (Hamming Decoder - Matrix Calculation)
* Revision: 1.00
* Date: January 21,1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM08
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 0.50 12/15/92 M.A. McQuilken
* HC05 version to be translated to HC08 code
*
* Rev 0.60 01/21/93 M.R. Glenewinkel
* Fixed logic bugs
*
* Rev 1.00 01/22/93 M.R. Glenewinkel
* HC08 version
*
**
*
* Program Description:
*
* This routine will evaluate a received Hamming-encoded
* codeword and decode it into its original form, thereby
* receiving the originally encoded data. HAMDEC will
* successfully do this even in the presence of up to 1
* single-bit error induced into the received codeword
* by the channel.
*
* This routine works similarly to the HAMENC2 routine, in
* that the calculations that are performed are actual
* matrix-type arithmetic operations. The routine works like
* this: The workspace is prepared (cleared), the received
* codeword is multiplied by each column of a matrix referred
* to as "the transpose of the parity check" matrix, byte wide
* parity is generated, and a 3-bit word is created (it is
* called the syndrome). The non-zero syndrome is then used
* to identify the bit location of the error. The syndrome is
* used to correct the corrupted bit position and recover the
* original four-bit info word. If the syndrome is zero, then
* no detectable errors have occurred and the info word
* is recovered.
*

AN1221/D MOTOROLA
23

* TASK DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* ACCA Enter routine with
* ACCA=Codeword.
* ACCA Same contents
* as InfoWord.
* InfoWord The recovered
* info word.
*
* LOCAL DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* BitCounter BitCounter Keeps track of the
* column # within
* HTranspose.
* CodeWord CodeWord Yup, you guessed it
* ...this is where we
* keep a temp version
* of the codeword.
* ColumCntr ColumCntr Keeps track of the
* H-transpose column
* that is combined
* with the codeword.
* InfoWord The recovered
* info word.
* Syndrome Syndrome Data which gives us
* the location of any
* errors (if any).
* ACCA ACCA Misc. computational
* use.
* X X Misc. computational
* use.
*
*
**
*
* Register and Variable Equates
*
* None
*
**

MOTOROLA AN1221/D
24

*
* Memory
*
 ORG $50
BitCounter RMB 1
CodeWord RMB 1
ColumCntr RMB 1
InfoWord RMB 1
Parity RMB 1
Syndrome RMB 1
*
**

 ORG $1000 ;beginning of program
START EQU *

**

* Main Routine

* We must prepare the workspace...any nonzero stuff in some variables
* could really mess up our process. So...

HamDec clr ColumCntr
 clr Syndrome

* Since we enter this routine with the codeword contained in the
* accumulator, and use the codeword multiple times, a copy is first
* made into the location called "CodeWord":

 sta CodeWord

GetCodeWord lda CodeWord ;get the first argument
 ; used in our multiplication.
 ldx ColumCntr ;get the current column to
 ; be worked on
MultEm and HTranspose,X ;Multiply!

* The next step in the process is to calculate the parity of the
* received codeword. This is accomplished by rotating each bit
* through the carry bit and then complementing a byte called "parity":

CalcParity clr Parity ;clear the workspace
 mov #8,BitCounter ;prep loop counter x to do
 ; all eight bits in received
 ; codeword.
 ;it's now prepped.

AN1221/D MOTOROLA
25

RotateIt lsla ;start the process of deter-
 ; mining the state of each
 ; bit within the rec'd
 ; codeword.

 bcc BumpCntr2 ;if carry is not positive,
 ; then do nothing but
 ; bump counter.

* Otherwise, fall through to here:

CompParity com Parity

* Bump pointer for the next bit to do. If the counter is zero, then
* the process stops:

BumpCntr2 dbnz BitCounter,RotateIt
 lda Parity

* The next step in our overall decoding of the codeword into an
* information word, is to calculate the syndrome. Remember, the
* syndrome will tell us whether a detectable error has occurred and
* allow us to find out where it occurred. Again, if the syndrome is
* zero, then no detectable error has occurred and we may recover the
* original info word by merely "looking it up" in a look-up table.

CalcSyndrome cmp #$FF
 bne BildSynDun ;if syndrome (bit#=X)
 ; is a 0, then
 ; branch else fall through...

 ldx ColumCntr ;find out which part of the
 ; syndrome we're working on.
 lda CoSet,X ;get ith bit of syndrome
 ; and set to a one.
 ora Syndrome
 sta Syndrome ;save it for later use.

* We're finally to the point where we want to see if all of the bits
* have been processed. This is done by updating the column counter
* (ColumCntr) and branching back to the top of the process if we
* must finish constructing the syndrome. Else, we move down into
* correcting the error and/or just recovering the codeword.

BildSynDun equ *
ChkColumCnt inc ColumCntr ;inc current column counter
 lda ColumCntr ;load column counter
 cmpa #3
 blo GetCodeWord ;branch if not done with
 ; all 3 columns

MOTOROLA AN1221/D
26

ChkSyndrome ldx Syndrome
 lda CodeWord ;get codeword for correction
 eor CoSet2,X ;correct the codeword. ACCA
 ; now contains the corrected
 ; codeword.

* One of the traits of Hamming codes is that part of the codeword
* is the info word (nibble, in this case). If you look at the
* listing for HamEnc1, you'll notice that the least significant
* nibble contains the info word. Hence, the recovery process for
* the Hamming decode merely consists of ANDing the LSN of the
* corrected codeword. So...

 and #$0F ;ACCA now has the original
 ; info word.
 sta InfoWord

DONE nop
 bra DONE ;done !!!

**

* Tables

HTranspose FCB %01001011
 FCB %00101110
 FCB %00010111

CoSet FCB %00000100
 FCB %00000010
 FCB %00000001

CoSet2 FCB %00000000
 FCB %00010000
 FCB %00100000
 FCB %00000100
 FCB %01000000
 FCB %00000001
 FCB %00001000
 FCB %00000010

**

* Vector Setup

 ORG $FFFE
 DW START ;set up reset vector

**

AN1221/D MOTOROLA
27

APPENDIX D
TDPACK FLOWCHART AND CODE LISTING

Begin TDPACK

Init
SrcCntr = SrcBufrTop

Load X with SrcCntr;
Shift left X into

carry bit

Load X with DestCntr;
Rotate left, carry bit
into destination byte

Init
DestCntr = DestBufrTop

BitCounter = 8

BitCounter =0
?

Increment DestCntr;
Decrement BitCounter

N

Inc SrcCntr

SrcCntr =
SrcBufrTop + 8

?

End TDPACK

Y

A

A

N

MOTOROLA AN1221/D
28

**
*
* Program Name: TDPACK.ASM (Time Diversity Pack and UnPack)
*
* Revision: 1.00
* Date: January 20,1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM08
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 0.50 12/15/92 M.A. McQuilken
* HC05 version to be translated to HC08 code
*
* Rev 0.60 01/20/93 M.R. Glenewinkel
* Fixed logic bugs
*
* Rev 1.00 01/22/93 M.R. Glenewinkel
* HC08 version
*
**
*
* Program Description:
*
* This routine will take a matrix that is 8 bits wide and 8
* bytes deep and transpose the matrix so that the first row
* becomes the 1st column, the second row becomes the 2nd
* column...the last row becomes the 8th column. This is to
* distribute data bits over several byte transfers so that no
* channel errors "wipe out" a complete single byte...only
* individual bits within each source byte will be hit (if the
* channel fades are "deep" and not frequent). It is expected
* that the complementary process of "unpacking" (un-transposing)
* on the receive end must be done to recover the data as it was
* intended. By executing another transpose on the data, the data
* will be "unpacked" to its original form.
*
* As stated above, this routine transposes a matrix consisting
* of 64 bits. It does this by left shifting each bit of one
* source row into its corresponding destination column. After
* all eight bits of the source are shifted to the destination
* column, the next source byte is left shifted to the next
* destination column. This entire process is repeated until
* all eight source bytes and destination bytes have had all of
* their bits moved.

AN1221/D MOTOROLA
29

*
* Task Data:
*
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* SrcBuffer Eight byte buffer for
* info that is to be
* transposed before
* transmission on
* channel.
* DestBuffer Eight byte buffer that
* contains transposed
* version of data
* previously contained
* in SrcBuffer.
*
*
* LOCAL DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* BitCounter BitCounter Keeps track of the
* bits being shifted
* from the source
* buffer
* DestCntr DestCntr Current byte location
* in destination
* buffer.
* SrcCntr SrcCntr Current byte location
* in source buffer.
* ACCA ACCA Misc. computational
* use.
* X X Misc. computational
* use.
*
**
*
* Register and Variable Equates
*
* None
*
**

MOTOROLA AN1221/D
30

*
* Memory
*
 ORG $50
BitCounter RMB 1
DestCntr RMB 1
SrcCntr RMB 1
SrcBuffer EQU *
SrcBufrTop RMB 8
DestBuffer EQU *
DestBufrTop RMB 8
*
**

 ORG $1000 ;beginning of program area
START EQU *

**

* Main Routine

* Initialization of the variables must occur before the data can
* be manipulated.

TDPack mov #SrcBufrTop,SrcCntr
 ;the starting place for
 ; source data manipulation

* Although the next couple of lines could also be considered
* basic workspace initialization, the initialization occurs
* every 8-bits of source data manipulation:

SetUpDestPntr mov #DestBufrTop,DestCntr
 ;these two lines allow us to
 ; point to DestBufrTop

* A separate bit counter is maintained to ease the hassle of
* evaluating the loop point for the 8 bits:

 mov #8,BitCounter ;(BitCounter) <- #8

* At this point, the inner loop (which counts the bits shifted out
* of the source buffer) begins.

AN1221/D MOTOROLA
31

InnerLoop ldx SrcCntr ;SrcCntr contains the
 ; location of the current
 ; byte to be shifted
 ; out of the source buffer.
 lsl ,X ;this moves from source
 ; data buffer
 ; into the carry bit.

* Time to move the data into the destination buffer:

 ldx DestCntr ;like the SrcCntr, this
 ; pointer contains the
 ; address of the destination
 ; byte.
 rol ,X ;move data from carry into
 ; destination byte.

* Here's where we determine if we've shifted enough data bits:

 inc DestCntr ;proceed to next
 ; destination byte
 dbnz BitCounter,InnerLoop
 ;branch if we've not moved
 ; eight bits in eight of
 ; the destination bytes.

* If we've made it here, then we've moved an eight bit chunk of the
* source buffer. These next few lines of code determine the actual
* value of the pointer into the source buffer. It also contains
* the test for completion of movement into the destination buffer:

 inc SrcCntr ;update counter
 lda SrcCntr ;get counter in ACCA

 cmp #SrcBufrTop+8 ;test
 bne SetUpDestPntr ;branch if we haven't
 ; moved everything.

DONE nop ;done !!!
 bra DONE

**

* Vector Setup

 ORG $FFFE
 DW START ;set up reset vector

**

MOTOROLA AN1221/D
32

	INTRODUCTION
	BACKGROUND
	MODEL FOR A DATA TRANSMISSION SYSTEM
	Problems with Data Transmission Systems
	Types of Noise
	One-way Data Transmission
	Two-way Data Transmission

	HAMMING ENCODING
	HAMENC1 — HAMMING ENCODER #1, TABLE LOOK-UP
	HAMENC2 — HAMMING ENCODER #2, MATRIX CALCULATION

	HAMMING DECODING
	ERROR DETECTION AND CORRECTION OF RECEIVED CODEWORD

	TIME DIVERSITY PACK AND UNPACK
	SOME LIMITATIONS OF HAMMING PERFORMANCE
	HOW TO IMPROVE HAMMING PERFORMANCE
	TDPACK — TIME DIVERSITY PACK AND UNPACK

	APPENDIX A HAMENC1 FLOWCHART AND CODE LISTING
	APPENDIX B HAMENC2 FLOWCHART AND CODE LISTING
	APPENDIX C HAMDEC FLOWCHART AND CODE LISTING
	APPENDIX D TDPACK FLOWCHART AND CODE LISTING

