MOTOROLA .
Order this document
SEMICONDUCTOR APPLICATION NOTE by AN1221/D

AN1221

Hamming Error Control Coding
Technigues with the HC08 MCU

by Mark McQuilken & Mark Glenewinkel
CSIC Applications

INTRODUCTION

This application note is intended to demonstrate the use of error control coding (ECC) in a digital transmis-
sion system. The HC08 MCU will be used to illustrate the code development of this process. A message
frame consisting of a 4-bit data field with three parity bits will be encoded to allow the original four bits to be
recovered, even if any single bit is corrupted during the transmission and reception processes. This pro-
cess is based upon a class of linear error-correcting codes called Hamming codes. The process of using
time diversity is also discussed as a way to control burst errors in a transmission system.

BACKGROUND

MODEL FOR A DATA TRANSMISSION SYSTEM

Generally, the processing of digital data (in a whole system and/or within a system) can be modelled as a
generalized data transmission or storage system. Such a system consists of an information source, the
“channel” (medium or storage), and the destination device. Some possible specific implementations that fit
this generalized model are shown in Table 1 below:

Table 1. Digital Data Transmission System Implementations

Example System Information Source Channel Destination
Personal computer CPU RAM or hard disk CPU or serial interface
Digital telephone Your digitized voice Telephone company’s wires Whoever you're calling
and switching system (another telephone)
Stereo system Compact disc Laser optics and electronics | Audio output (ultimately to
transducers like speakers)
Avionic weapon Cockpit command to Wiring/electronics between Electro-mechanical
development system release weapon stores cockpit and weapons assembly which activates

and deploys weapons

There are many other systems that also fit this simplistic model of a data transmission system.

Problems with Data Transmission Systems

In a perfect world, data would be transmitted and received completely intact. In the real world, we
must often combat the effects of errors induced in our transmitted/received information. For example,
in the above-mentioned avionics system, if a command from the cockpit to release the weapons was
transmitted and corrupted so that the deployment electronics interpreted the message as “hold” rather

@ MOTOROLA
©MOTOROLA, INC., 1993 AN1221/D

than “release,” the intended target may never be hit. A worse case would be the pilot wanting to abort
deployment and the “abort” command was corrupted by noise to become “release” at the deployment
assembly. A system must be built in a way to avoid disastrous effects of data corruption. ECC is the
field of study that deals with methods of coding information to reduce the effects of errors.

One of the general challenges facing the system designer is to implement ECCs without degrading the
data transfer rates too significantly. For example, one of the simplest ways to hedge against channel-
induced errors, is to specify a transmission protocol that requires multiple transmissions of the same data.
Such a protocol will reduce the effective rate of transmission by a factor equal to the number of
retransmissions per information block. Even if this retransmission strategy guaranteed that at least one of
the data blocks was correct at the receiver, there are two problems:

1) How will we know which of the data blocks is the correct one?

2) How do we make up for the channel bandwidth lost by transmitting the same data multiple times?

ECCs can actually be more effective in using the channel's existing bandwidth than the above scenario.
Instead of merely retransmitting data, ECCs take up some of the channel bandwidth (but less than
retransmissions) to send some data redundancies that may be used for the detection and, sometimes,
correction of corrupted received data.

Types of Noise

There are many types of ECCs. Each ECC has its own set of strengths and weaknesses. One important
aspect of all the codes is their ability or inability to deal with each of the error types: random channel
errors/noise, burst-type errors/noise, or a combination of each. The codes discussed in this presentation
(Hamming codes) are a class of algebraic codes that deal effectively with random channel noise. Burst
errors are typically longer in duration than random errors and thus require more robust code types to
prevent unrecoverable data. This application note also describes time-diversity coding used to prevent
burst-type noise. The technique of coupling time-diversity ECCs with random error ECCs can help
improve the performance of the ECC in the presence of burst errors.

One-way Data Transmission

In a system where only one-way communication is possible and precautions must be taken against data
corruption, error control codes must be employed by using forward error correction (FEC). FEC is
accomplished by employing codes that allow for “automatic” correction of specific types of errors induced
by noise in the channel and received by the receiver. Hamming codes are one of the simplest classes of
FEC codes and are characterized by the following traits:

— The number of parity-check symbols (bits) must be greater than or equal to 3. Let these symbols
be represented by the variable m.

— The number, k, of information symbols (bits) is:

k=2M_m-1

— The total length, n, of the code is:

MOTOROLA AN1221/D
2

— Error correcting capability is exactly one symbol.
— The error detecting capability is all error patterns of two errors or less.

— The parity check matrix is:

H=1[In Qmk]

where Iy is an m x m identity matrix and Qm k is the submatrix that consists of k columns which are of
weight two or more (i.e., have two or more ones in them).

—The generator matrix is:

G=[Qmk Ik]

where Ik is a k x k identity matrix and QTm,k is the transpose of the submatrix Q that consists of m
columns and k rows.

Two-way Data Transmission

Error control for a two-way system can be accomplished with both error control coding as well as some
rational scheme of data retransmission. A system that utilizes retransmission of messages is said to use
an automatic repeat request (ARQ) protocol.

HAMMING ENCODING

HAMENC1 — HAMMING ENCODER #1, TABLE LOOK-UP

The 4-bit information word to be encoded is used as an index into a look-up table. A (7,4) Hamming code
represents a 7-bit word with four data bits and three code bits. A (7,4) Hamming code will have 24 (16)
different codeword possibilities. The 16-element look-up table consists of the pre-encoded (i.e., pre-
calculated) codewords. This is the speediest of the encoding techniques, but consumes a lot of memory
for anything except the smallest code length. For example, the next Hamming codeword size up from the
(7,4) Hamming shown in this example would be a (15,11) Hamming code according to the above
formulas. This means that the look-up table would have to be 211 (2,048) elements deep (a total of 4,096
bytes @ 2 bytes per element). The flowchart and HC08 assembly code for HAMENC1 is listed in
Appendix A.

HAMENC2 — HAMMING ENCODER #2, MATRIX CALCULATION

HAMENC?2 actually performs the matrix arithmetic used to encode information into Hamming codewords.
This is done with the generator matrix, G, described earlier. The generator matrix consists of two
submatrices: a k x k identity matrix, Ik , and the transpose of matrix Q, QTm,k , Where matrix Q consists of
k columns which are of weight two or more. The generator matrix used to generate the look-up table in
HAMENC1 is:

AN1221/D MOTOROLA
3

G=1QTmk Ik]

1101000
0110100
G=l1110010
1010001

where m =3 and k = 4.

The 4-bit information word is first bit-wise multiplied (logically anded) by each column in the generator
matrix. Each bit in each of the column products is then added together, modulo-2, to create a parity bit for
each product. An example of a 4-bit infoword and its generated codeword is given below.

in . G Matrix Cod

nformation ode

Word 1101000 Word
0110100

[1010] |1110010| = [0011010]
1010001

The flowchart and HC08 assembly code for HAMENC?2 is listed in Appendix B. Once an information word
is encoded, it may be transmitted over the channel for recovery by the HAMDEC routine explained next.

HAMMING DECODING

ERROR DETECTION AND CORRECTION OF RECEIVED CODEWORD

A 7-bit Hamming codeword will be decoded into the original 4-bit information word even with up to one bit
in the codeword being corrupted by the channel. This routine will use matrix math to recover the
information word. The parity-check matrix used in the HAMENC routine(s) is:

T
I
coor
or o
N =Ke=)
oOr R
k=)
e
RO

The parity-check matrix has the property such that when a 7-bit codeword generated by the generator
matrix and uncorrupted by the channel is multiplied by the transpose of the parity-check matrix, HT , a
zero vector is obtained. The three-element result is called the syndrome. For uncorrupted data, the
syndrome should be a zero vector. An example is given below.

H Transpose

Code Matrix
Word 1 0 0] Syndrome
0011010 010 = 000
|:] 001 []

110

011

111

[1 0 1]

MOTOROLA AN1221/D
4

Suppose that we transmit a code vector, v, and that an error occurs in the fourth bit position. This is the
same as adding a vector, e, to the codeword v where e looks like:

e=[0001000]
By multiplying the received vector by the transpose of the parity-check matrix, we obtain:
(v+e)HT = vHT + eHT = eHT
since vHT = 0.

The resultant non-zero vector, eHT, indicates a problem in the received codeword. As mentioned above,
this product of the received vector and the transpose of the parity-check matrix is called the syndrome.
An example of a corrupted codeword and its syndrome is given below.

H Transpose

Code _Matrlx
Word 100 Syndrome
0010010 010 = (110
[] oro = 1]
110
011
Corrupted 111
Bit _1 0 1_

The syndrome bit pattern of a single bit error will be the pattern of one row within HT.

The row number is numerically equivalent to the corrupted bit position in the received codeword. Thus,
by calculating the syndrome and obtaining a non-zero vector we have:
1) Identified that one or two errors have occurred.

2) In the case of a single bit error, we have identified the location of the error within the received
word.

The last item to be accomplished is to correct the identified error, which is accomplished by
complementing the bit position in the received codeword. The flowchart and HC08 assembly code for
HAMDEC is listed in Appendix C.

AN1221/D MOTOROLA
5

TIME DIVERSITY PACK AND UNPACK

SOME LIMITATIONS OF HAMMING PERFORMANCE

Although the Hamming ECC allows recovery of “mildly” corrupted codewords, it is limited in its
effectiveness against some “real world” corruptions. It was stated earlier that Hamming ECCs are useful
in combating the effects of random noise. This applies only for random bit corruptions that do not exceed
one bit time per codeword since Hamming codes can only correct up to one bit error per codeword.
Where burst errors occur—noise corruptions typically considered longer in duration than random noise—
other FEC types are the preferred antidote. However, the FECs useful for combating burst noise require
considerable processing power and, as such, should only be used under duress.

HOW TO IMPROVE HAMMING PERFORMANCE

Time-diversity coding is another way to combat the effects of burst noise. By combining bits of many
codewords into a transmission packet, it is possible to limit the effect of long noise bursts on a given
codeword. Specifically, we view a collection of eight Hamming-encoded codewords arranged in RAM like
this:

[a07 206 a05 a04 ... a00]
al7 al6é al5 al4 ... al0
a27 a26 a25 a24 ... a20

[a77 a76 a75 ar4 ... a70
where each element in the matrix, ajj , is a single bit within each byte-wide codeword.

In the case of a (7,4) Hamming code, the eighth bit (bit 7) of each codeword is zeroed. A matrix is used
to represent the data bits as they would appear in RAM, that is, the first row is the first data byte with the
LSB to the right and MSB to the left, the second row is the next data byte, etc.

By taking one bit from each of the eight Hamming-encoded words and assembling eight bytes where
each byte is made of one bit from each of the original codewords, we distribute the information from one
codeword over eight different transmissions:

[a07 al7 a27 a37 ... a77]
a06 al6é a26 a36 ... a76
a05 al5 a25 a35 ... a75

[200 al0 a20 a30 ... a70 |
If a “deep fade” in the channel should take out an entire transferred byte, only one bit within each
codeword would be affected because each codeword is effectively spread over many data transfers. As
shown in the above matrix, the first row (i.e., first data byte to be transferred) consists of the eighth bit
position (MSB) of the pre-diversity coded data matrix. If this first row was transmitted and completely
corrupted on the receive end, only one bit from each of the pre-diversity encoded codewords would be
corrupted. This allows the relatively modest Hamming decoder to detect and completely correct all of the
corrupted codewords despite losing one entire byte of data out of eight.

MOTOROLA AN1221/D
6

TDPACK — TIME DIVERSITY PACK AND UNPACK

TDPACK transposes an 8 x 8 matrix consisting of 8 bits wide (eight columns) and 8 bytes deep (eight
rows). Normally such a matrix would be transmitted, following convention, the first row, most significant
bit first. Each subsequent row would be sequentially transmitted, again with MSB first. By executing
TDPACK on such an array of bits, the first byte to be transferred would actually contain the seventh bit
(MSB) of each byte. Each subsequent byte of data transmitted out of this transposed version of the
original data matrix actually only contains one bit from each of the original data bytes. In this way, each
byte transmission contains only one bit from each of the original data bytes. Should anything happen to
corrupt up to an entire eight bits of transmission, no more than one bit per original data byte would be
affected.

After the codeword is received, it must be unpacked. The same routine used to pack (transpose) the
matrix is used to unpack it to its original order. It is the output of the transpose that would be used as the
input to an ECC decode routine (such as HamDec). The flowchart and HC08 assembly code for
TDPACK is listed in Appendix D.

AN1221/D MOTOROLA
7

APPENDIX A
HAMENC1 FLOWCHART AND CODE LISTING

[Begin HAMENC18]
Enter with X-reg =
LSN (least sig nibble)

of Infoword

Do table look-up
of CodeWord

¢

ACCA = CodeWord

'
=D

MOTOROLA AN1221/D
8

R I R I R I S I R I R I I I I R I I O R I R I I I O S R R I R I R I

* Program Name: HAMENCL. ASM (Hamm ng Encoder #1 - Tabl e Look- up)
* Revision: 1.00
* Date: January 21,1993

* Witten By: Mark d enewi nkel
* Mot orol a CSI C Applications

* Assenbl ed Under: P&E M croconputer Systens | ASM8

* khkhkhkhkhkhkhkhkhkhkhhhhkhkdhkhkhkhkhkhkhkdhhdkkkkkkd*k

* * Revi si on History *

* Ak hkkkkkk k%%

*

* Rev 0.50 12/ 15/ 92 MA. MQuilken
* HCO5 version to be translated to HCO8 code
*

* Rev 0. 60 01/21/93 M R d enew nkel
* Added npre conmments

*

* Rev 1.00 01/ 22/ 93 M R d enew nke
* HCO08 ver si on

R I I R I S I R I R I I I R I R I I I O S R R I R R I O

* Program Description

* This routine will encode a four-bit info word into a (7,4)
* Hammr ng encodi ng codewor d.

*

* This source code is an exanple of using a table | ook-up

* net hod to encode a four bit info word to a seven bit code
* word. For a nore detail ed description of the process of error
* control codes and Hanmi ng codes in particular, please

* refer to Motorola Application Note 1221

* This routine consists of only one instruction, a

* | ook-up table fetch, where the encodi ng has been al ready

* done and inserted into this | ook-up table.

*

* "info word" is the word you want to encode

* "codeword" is an encoded info word

*

* TASK DATA:

* | nput Variables Qut put Vari abl es Descri ption

K e o e o e

* X Enter routine with
* X-reg=LSN of info
* wor d.

* ACCA Leave routine with
* 7-bit codeword in here

AN1221/D MOTOROLA
9

* LOCAL DATA:
* Input Variables Qut put Vari abl es Descri ption

* ACCA M sc. conputati onal
* use.

hkhkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhdhdddhddrdddrdrrdrx*k

* Regi ster and Variabl e Equat es

* None

hkhkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhdhdddhddrdddrdrrdrx*k

*

* Menory

*

* None

*

hkhkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhdhdddhddrdddrdrrdrx*k

ORG $1000 ; begi nni ng of program area
START EQU *

LR R R R R R R R R I I R I R I R I O

* Main Routine

HANMENC1 | da CodeWbr ds, X ; ACCA <- (CodeWor ds+X)
; X contains the offset
; from CodeWor ds

DONE nop ; done 111
bra DONE

R I I I R I R I R I S I O I R I R I R I O S R R I S R I S

MOTOROLA AN1221/D
10

* Tabl es

ORG $2000
CodeWor ds FCB 290000000
FCB %9©1010001
FCB %9©1110010
FCB 990100011
FCB 990110100
FCB 991100101
FCB 991000110
FCB %90010111
FCB %9©1101000
FCB 990111001
FCB 990011010
FCB 991001011
FCB 991011100
FCB %90001101
FCB %90101110
FCB 291111111
khhkkkhhkkhhhkhkhhhkhhhhdhhdhhhdhhddhhdhdxddhhdhdxddhddhdxddhddhdxddhx*ddh*x*d*x**%x*%x
* Vector Setup
ORG $FFFE
DW START ;set up reset vector

khkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhdhhhdhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhdhdhkhdhkrrhkrrhkx*

AN1221/D MOTOROLA
11

MOTOROLA
12

APPENDIX B

HAMENC2 FLOWCHART AND CODE LISTING

[Begin HAMENC2

Y

Enter with
ACCA = LSN of
Infoword

'

Init WordCntr to O;
Init CodeWord to 0

v

Store InfoWord into
temporary storage

O

Parity =0
?7??

¢N

Find which bit to set
in CodeWord;
fetch current WordCntr

r

Fetch Infoword from
temporary storage;
fetch current WordCntr

v

Logically AND
InfoWord with the
generator matrix

look-up table

v

Load X-reg with
product

'

Fetch parity for
product from
ParaTee look-up table

¢

Set the corresponding
bit in the CodeWord

K

Increment WordCntr

WordCntr< 7 ?

¢N

Done

AN1221/D

R I R I R I S I R I R I I I I R I I O R I R I I I O S R R I R I R I

* Program Name: HAMENC28. ASM (Hanm ng Encoder - Matrix Cal cul ati on)
* Revision: 1.00
* Date: January 21,1993

* Witten By: Mark d enewi nkel
* Mot orol a CSI C Applications

* Assenbl ed Under: P&E M croconputer Systens | ASMI8

* khkhkhkhkhkhkhkhkhkhkhhhhkhkdhkhkhkhkhkhkhkdhhdkkkkkkd*k

* * Revi si on History *

* Ak hkkkkkk k%%

*

* Rev 0.50 12/ 15/ 92 MA. MQuilken
* HCO5 version to be translated to HCO8 code
*

* Rev 0. 60 01/ 20/ 93 M R d enew nkel
* Fi xed | ogi ¢ bugs

*

* Rev 1.00 01/ 22/ 93 M R d enew nke
* HCO08 ver si on

R I I R I S I R I R I I I R I R I I I O S R R I R R I O

* Program Description

* This routine will encode a four-bit info word into a (7,4)

* Hamm ng encodi ng codewor d.

*

*

* This routine differs fromHAMENCL not in results, but in

* nmet hod. Whereas HAMENC1 was basically an easy | ook-up of

* pre-encoded (7,4) Hamm ng codewords, HAMENC2 actually

* perfornms the matrix arithnmetic to encode the 4-bit info word
* i nput. Fortunately when working with nodulo arithnetic

* (particularly nod-2), things like nultiplication and such

* are reduced to fairly easy functions.

*

* This routine follows this basic overall flow W rkspace is

* cleared, the info word is first multiplied, each bit in the
* product is then added together (this is effectively

* calculating the parity of the product), the actual fina

* codeword is constructed one-bit at a time, at that point

* the next row fromthe generator matrix is fetched and this

* process repeated until all of the generator matrix rows have
* been conbined with the info word.

AN1221/D MOTOROLA
13

* For a nore detail ed description of the process of error

* control codes and Hanm ng codes in particular, please

* refer to Motorola Application Note 1221.

*

* TASK DATA:

* |Input Variables Qut put Vari abl es Descri ption

K o o o o o e e e e o e e e e e e e e e e e e e e e

* ACCA Enter routine with
* ACCA=LSN of info
* word (4-bit).

* ACCA Leave routine with
* 7-bit codeword in
* here.

* LOCAL DATA:

* Input Variables Qut put Vari abl es Descri ption

K e e o o e

* CodeWord CodeWord Yup, you guessed it
* ...this is where we
* keep a tenp version
* of the codeword.

* WordCntr WordCntr Keeps track of the

* GenMatri x row that
* is combined with

* the info word.

* ACCA ACCA M sc. conput ati onal

* use.

* X X M sc. conputati onal

* use.

hkhkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhdhhdhdhhhdhhhdhhhdhhhdhhhddhddrhddrddrdrrdrx*k

* Regi ster and Variabl e Equates

* None

*
hkhkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhdhddhddddrdrrdrx*k

*

* Menory

org $50
CodeVord RVB 1
| nf oWord RVB 1
WordCntr RVB 1

*

EE R I R R I I I I R I S O R I I R R I S R R S R I R I S R R I I I I

MOTOROLA AN1221/D
14

ORG $1000
START EQU * ; begi nni ng of program area

khkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhdhhhdhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhdhdhkhdhkrrhkrrhkx*

* Main Routine

* As stated in the header, the first place to start is
* the clearing of data space:

Hantnc2 clr WordCntr
clr CodeVord

* Next, before we begin the process of multiplying and adding the

* codeword with the info word, we need to save a copy of the info word
(remenber, we are entering the routine with ACCA having the

* info word):

*

Savel nfo sta | nf oWbr d

* Now we begin the fun stuff...doing the actual nultiplication and
* addition that is required to this super-fun Hanm ng stuff. Each
* multiplication with binary data is actually a logical AND on a

* bitw se basis:

Get | nfoWord | da I nf oVrd ;get the info word for the
; multiplication
[dx VWordCntr ;get the current row count

; into the generator matrix.
and GenMatri x, X ;G forth and multiply...

* Well...that wasn't so bad, was it? Now that the nultiplication

* is complete we begin the task of adding the product, bit-by-bit

* (so to speak). Rather than go through the actual tedium of adding
* each bit within the product one bit at a tine, |'ve nmade a | ook-up
* table that has it done for you. It even has the clever name of

* PARATEE to rem nd you that the process of adding bits within a

* pyte is determining the byte's parity:

t ax ;the byte to have parity
; encoded resides in ACCA

Cal cParity | da Par aTee, X ;get the parity val ue
; from LUT.

AN1221/D MOTOROLA
15

* As nmentioned in the header, the actual codeword is constructed
* one-bit at a tinme. For each nultiplication and additi on we do,
* asingle bit within the final codeword results. At this point,
* then, we nust construct another bit of the codeword fromthe
last nultiplcation and addition

*

MakeCW cbega #0, BunpCntrl ;if parity is odd, then
; we do nothing to the
; final codeword.
;here's the branch to do
; nothing, otherw se
; we add a positive bit
; to the correct position
; in the codeword.

* |f we've made it here, then we knowto set a bit in the codeword.
* So even though the value in ACCA gets "stepped on" in this part

* of the routine, the contents of ACCA have done its job and got

* us to this point. A look-up table (called CoSet) was used as the
* mechanismto construct the codeword one bit at tinme. CoSet

* contains only one bit=1...in each case only the bit that we w sh
* to set within the byte:

I dx Wor dCnt r ;WordCntr has the current bit
; positioninit.

| da CoSet , X ;get bit (in correct position)
; to be set.

ora CodeWord ;set the bit.

sta CodeWord ;modi fy CodeWord for next use

* This conpletes a single cycle in the process of encoding an info
* word into a bit within the final codeword. Al that is left to do
* is to check to see if we have conpleted the entire codeword. |If

* we haven't, then pointers get nodified so we can do the next one:

BunpCntr 1 inc Wor dCnt r ;inc current row bit position
| da Wor dCnt r ;| oad updated WordCntr
cnp #7 ;check to see if we're done.
bl o Get | nf oWord ; G0 back, Jack, and

; do it again..

DONE nop ; done !!
bra DONE

khkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhdhhhdhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhdhdhkhdhkrrhkrrhkx*

MOTOROLA AN1221/D
16

* Tabl es

GenMat ri x FCB %90001011
FCB 990001110
FCB 990000111
FCB 990001000
FCB 990000100
FCB 990000010
FCB %©0000001
Par aTee FCB $00
FCB $FF
FCB $FF
FCB $00
FCB $FF
FCB $00
FCB $00
FCB $FF
FCB $FF
FCB $00
FCB $00
FCB $FF
FCB $00
FCB $FF
FCB $FF
FCB $00
CoSet FCB 291000000
FCB %©0100000
FCB %90010000
FCB 0001000
FCB %9©0000100
FCB 290000010
FCB 290000001

EE R I I I R I I R I S I S R I R R I I I S R R I R R I I S R R I I I

* Vector Setup

ORG $FFFE
DwW START ;set up reset vector

R I I R I R I R I S I I I I O I R I I R I I I O R R I S I R I O

AN1221/D MOTOROLA
17

Enter with
CodeWord in
ACCA

APPENDIX C

HAMDEC FLOWCHART AND CODE LISTING

Begin HAMDEC

'

Construct syndrome;
Go to
CALCSYNDROME

|

ColumCntr =0
Clear syndrome byte

Increment ColumCntr

'

Store CodeWord to
temporary storage

r

Get CodeWord from
temporary storage

'

Logically AND CodeWord
with ColumCntr row of
HTranspose

ColumCntr < 3
?

'

Error correction;
Go to CHKSYNDROME

Calculate parity;
Go to CALCPARITY

MOTOROLA
18

Store ACCA to Infoword

End HAMDEC

AN1221/D

Begin CALCPARITY

Enter with
ACCA = CodeWord

* H Transpose
¢ Y
Clear parity byte
¢ Complement parity byte
Init BitCounter to 8 ¢
r Decrement BitCounter
-l
Rotate left ACCA thru
carry bit

BitCounter =0
?

Load ACCA with parity

'

End PARCALC

AN1221/D MOTOROLA
19

Begin
CALCSYNDROME
Enter with
ACCA = bytewide
panty

ACCA = $FF
?

Load X with ColumCntr;
Load ACCA with value
from COSET table

'

Set ColumCntr bit in
syndrome

—

End
CALCSYNDROME

MOTOROLA AN1221/D
20

Begin
CHKSYNDROME

'

Fetch syndrome

'

Use syndrome as

pointer into error

table (CoSet289),
error pattern

'

Exclusive-Or error
pattern with CodeWord

'

Logically-AND
corrected CodeWord
with $0F

'

End CHKSYNDROME

AN1221/D MOTOROLA
21

R I R I R I S I R I R I I I I R I I O R I R I I I O S R R I R I R I

* Program Name: HAMDEC8. ASM (Hanm ng Decoder - Matrix Cal cul ation)
* Revision: 1.00
* Date: January 21,1993

* Witten By: Mark d enewi nkel
* Mot orol a CSI C Applications

* Assenbl ed Under: P&E M croconputer Systens | ASM8

* khkhkhkhkhkhkhkhkhkhkhhhhkhkdhkhkhkhkhkhkhkdhhdkkkkkkd*k

* * Revi si on History *

* Ak hkkkkkk k%%

*

* Rev 0.50 12/ 15/ 92 MA. MQuilken
* HCO5 version to be translated to HCO8 code
*

* Rev 0. 60 01/21/93 M R d enew nkel
* Fi xed | ogi ¢ bugs

*

* Rev 1.00 01/ 22/ 93 M R d enew nke
* HCO08 ver si on

R I I R I S I R I R I I I R I R I I I O S R R I R R I O

* Program Description

* This routine will evaluate a received Hanmr ng- encoded

* codeword and decode it into its original form thereby

* receiving the originally encoded data. HAVDEC wi | |

* successfully do this even in the presence of up to 1

* single-bit error induced into the received codeword

* by the channel

*

* This routine works simlarly to the HAMENC2 routine, in

* that the calculations that are perforned are actua

* matri x-type arithmetic operations. The routine works |ike
* this: The workspace is prepared (cleared), the received

* codeword is nultiplied by each colum of a matrix referred
* to as "the transpose of the parity check"” matrix, byte wide
* parity is generated, and a 3-bit word is created (it is

* call ed the syndrone). The non-zero syndrone is then used

* to identify the bit |ocation of the error. The syndrone is
* used to correct the corrupted bit position and recover the
* original four-bit info word. If the syndrome is zero, then
* no detectable errors have occurred and the info word

* is recovered.

MOTOROLA AN1221/D
22

* TASK DATA:

* | nput Variables Qut put Vari abl es Descri ption

K e e e e e e e e e e e e e e e e

* ACCA Enter routine with
* ACCA=Codewor d.

* ACCA Sane contents

* as | nfoWwrd.

* I nf oWbr d The recovered

* i nfo word

* LOCAL DATA:

* I nput Variables Qut put Vari abl es Descri ption

K o o o o o e e e e o e e e e e e e e e e e e e e e

* BitCounter Bi t Count er Keeps track of the

* colum # within

* HTr anspose.

* CodeWord CodeWord Yup, you guessed it
* ...this is where we
* keep a temp version
* of the codeword.

* ColumCntr Col untCnt r Keeps track of the

* H transpose col um
* that is conbi ned

* with the codeword.
* I nf oWord The recovered

* info word

* Syndrone Syndr one Dat a whi ch gives us
* the [ocation of any
* errors (if any).

* ACCA ACCA M sc. conputationa

* use.

* X X M sc. conputationa

* use.

EE R I I I R I I R I S I S R I R R I I I S R R I R R I I S R R I I I

* Regi ster and Vari abl e Equates

* None

EE R I R R I I I I R I S I R R I R R I I S R R S R I I R R R I I I

AN1221/D MOTOROLA
23

*

* Menory

*

ORG $50

Bi t Count er RVB 1
CodeVord RVB 1
Col untntr RVB 1
I nf oWbr d RVB 1
Parity RVB 1
Syndr one RVB 1
*

EE R I I I R I I R I R I S O R I R I I I R S I R I I I S R R I I I O I

ORG $1000 ; begi nni ng of program
START EQU *

KR R S R R O O O S R I I O O O O S A R S O S

* Mai n Routine

* We nust prepare the workspace...any nonzero stuff in some variabl es
* could really mess up our process. So..

HanDec clr Col untCnt r
clr Syndr one

* Since we enter this routine with the codeword contained in the
* accunul ator, and use the codeword rmultiple times, a copy is first
* made into the location called "CodeWrd"

sta CodeWord
Get CodeWord | da CodeWord ;get the first argunent
; used in our multiplication
I dx Col untCnt r ;get the current columm to
; be worked on
Mul t Em and HTr anspose, X ; Mul tiply!

* The next step in the process is to calculate the parity of the
* received codeword. This is acconplished by rotating each bit
* through the carry bit and then conplenmenting a byte called "parity":

Cal cParity clr Parity ;clear the workspace
nov #8, Bi t Count er ;prep |l oop counter x to do
; all eight bits in received
; codewor d.

;it's now prepped.

MOTOROLA AN1221/D
24

Rot at el t Isla ;start the process of deter-
; mning the state of each
; bit within the rec'd
; codeword.

bcc BunmpCntr 2 ;if carry is not positive,
; then do nothing but
; bunp counter.

* Ot herwi se, fall through to here:
ConpParity com Parity

* Bunp pointer for the next bit to do. If the counter is zero, then
* the process stops:

BunmpCntr 2 dbnz Bi t Count er, Rot at el t
| da Parity

* The next step in our overall decoding of the codeword into an

* information word, is to calculate the syndronme. Renmenber, the

* syndrome will tell us whether a detectable error has occurred and
* allowus to find out where it occurred. Again, if the syndrone is
* zero, then no detectable error has occurred and we nmay recover the
* original info word by nerely "looking it up" in a |ook-up table.

Cal cSyndr one cnp #SFF
bne Bi | dSynDun ;1T syndrome (bit#=X)
; is a0, then
; branch else fall through..
| dx Col untCnt r ;find out which part of the
; syndrone we're working on
| da CoSet , X ;get ith bit of syndrome
; and set to a one.
ora Syndr one
sta Syndr one ;save it for later use

* We're finally to the point where we want to see if all of the bits
* have been processed. This is done by updating the columm counter

* (ColumCntr) and branching back to the top of the process if we

* must finish constructing the syndrone. Else, we nove down into

* correcting the error and/or just recovering the codeword.

Bi | dSynDun equ *

ChkCol unnt i nc Col untntr ;inc current colum counter
| da Col unmtCntr ;1 oad columm counter
cnpa #3
bl o Cet CodeWor d ;branch if not done with

; all 3 columms

AN1221/D MOTOROLA
25

ChkSyndr one | dx Syndr one
| da CodeWord ;get codeword for correction
eor CoSet 2, X ;correct the codeword. ACCA
; now contains the corrected
; codeword.

* One of the traits of Hamming codes is that part of the codeword
* is the info word (nibble, in this case). If you |look at the

* listing for HanEncl, you'll notice that the |east significant

* ni bble contains the info word. Hence, the recovery process for
* the Hammi ng decode merely consists of ANDing the LSN of the

* corrected codeword. So..

and #$0F ; ACCA now has the origina
; info word.
sta | nf oWbr d
DONE nop
bra DONE ; done !'!

hkhkhkkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhdhdddhddrdddrdrrdrx*k

* Tabl es

HTr anspose FCB %91001011
FCB 290101110
FCB 290010111

CoSet FCB 290000100
FCB 290000010
FCB 290000001

CoSet 2 FCB 290000000
FCB 290010000
FCB 290100000
FCB 290000100
FCB 291000000
FCB 290000001
FCB 290001000
FCB 290000010

EE R I R R I I I I R I S I R R I R R I I S R R S R I I R R R I I I

* Vector Setup

ORG
Dw

R I I R I R I R I S I I I I O I R I I R I I I O R R I S I R I O

MOTOROLA
26

$FFFE
START

;set up reset vector

AN1221/D

AN1221/D
27

APPENDIX D

TDPACK FLOWCHART AND CODE LISTING

Begin TDPACK

'

Init
SrcCntr = SrcBufrTop

O
!

+<

Init
DestCntr = DestBufrTop
BitCounter = 8

Inc SrcCntr

Y

Load X with SrcChntr;
Shift left X into
carry bit

'

Load X with DestCntr;
Rotate left, carry bit
into destination byte

'

Increment DestCntr;
Decrement BitCounter

BitCounter =0
?

SrcCntr =
SrcBufrTop + 8
?

‘Y

End TDPACK

MOTOROLA

R I R I R I S I R I R I I I I R I I O R I R I I I O S R R I R I R I

* Program Name: TDPACK. ASM (Tinme Diversity Pack and UnPack)

* Revision: 1.00
* Date: January 20,1993

* Witten By: Mark d enewi nkel
* Mot orol a CSI C Applications

* Assenbl ed Under: P&E M croconputer Systens | ASM)8

* khkdkhkhkhkhkhkhkhkhdx

* * Revi si on History *

* EE R I I I I I S I I I I I b I b I b I b b b b I O I

*

* Rev 0. 50 12/ 15/ 92 MA. MCQuilken
* HCO5 version to be translated to HCO8 code
*

* Rev 0. 60 01/ 20/ 93 M R d enew nkel
* Fi xed | ogi ¢ bugs

*

* Rev 1.00 01/ 22/ 93 M R d enew nke
* HCO08 ver si on

LR R R R R R R R R I I R I R I R I O

* Program Description:

* This routine will take a matrix that is 8 bits wide and 8

* byt es deep and transpose the matrix so that the first row

* becones the 1st columm, the second row becones the 2nd

* colum. ..the | ast row beconmes the 8th colum. This is to

* distribute data bits over several byte transfers so that no

* channel errors "wi pe out" a conplete single byte...only

* i ndividual bits within each source byte will be hit (if the

* channel fades are "deep" and not frequent). It is expected

* that the conplenentary process of "unpacki ng" (un-transposing)
* on the receive end nmust be done to recover the data as it was
* i ntended. By executing another transpose on the data, the data
* wi Il be "unpacked" to its original form

*

* As stated above, this routine transposes a matri x consisting
* of 64 bits. It does this by left shifting each bit of one

* source row into its correspondi ng destination colum. After

* all eight bits of the source are shifted to the destination

* colum, the next source byte is left shifted to the next

* destination colum. This entire process is repeated unti

* all eight source bytes and destination bytes have had all of
* their bits noved

MOTOROLA AN1221/D
28

* Task Dat a:

* Input Variables Qut put Vari abl es Descri ption

K e e o o e o e e e e e e e e e e e e e e e e e e e

* SrcBuffer Ei ght byte buffer for
* info that is to be

* transposed before

* transm ssi on on

* channel

* Dest Buf f er Ei ght byte buffer that
* contai ns transposed
* version of data

* previ ously contai ned
* in SrcBuffer.

* LOCAL DATA:

* | nput Variables Qut put Vari abl es Descri ption

K e e o e o e e e e e e e e e e e

* BitCounter Bi t Count er Keeps track of the

* bits being shifted

* fromthe source

* buf f er

* DestCntr DestCntr Current byte | ocation
* in destination

* buf fer.

* SrcCntr SrcCntr Current byte | ocation
* in source buffer.

* ACCA ACCA M sc. conputationa

* use.

* X X M sc. conputationa

* use.

KR R S R R O O O S R I I O O O O S A R S O S

* Regi ster and Vari abl e Equates

* None

KR R S R R O O O S R I I O O O O S A R S O S

AN1221/D MOTOROLA
29

*

* Menory

*

ORG $50
Bi t Count er RVB 1
DestCntr RVB 1
SrcCntr RvVB 1
SrcBuf fer EQU *
Sr cBufr Top RVB 8
Dest Buf f er EQU *
Dest Buf r Top RVB 8

*

R I R I I I R I R I I I I I I S R I R I O S R R I R I O O

ORG $1000 ; begi nni ng of program area
START EQU *

EE R I I I R I I R I R I S O R I R I I I R S I R I I I S R R I I I O I

* Mai n Routine

* |nitialization of the variables nust occur before the data can
* be mani pul at ed.

TDPack nov #Sr cBuf r Top, SrcCntr
;the starting place for
; source data mani pul ation

* Al though the next couple of Iines could also be considered
* basic workspace initialization, the initialization occurs
* every 8-bits of source data nmani pul ation

Set UpDest Pntr nov #Dest Buf r Top, Dest Cnt r
;these two lines allowus to
; point to DestBufrTop

* A separate bit counter is nmmintained to ease the hassle of
* evaluating the | oop point for the 8 bits:

nov #8, Bi t Count er ; (BitCounter) <- #8

* At this point, the inner |oop (which counts the bits shifted out
* of the source buffer) begins.

MOTOROLA AN1221/D
30

I nner Loop | dx SrcCntr ; SrcCntr contains the
; location of the current
; byte to be shifted
; out of the source buffer
| sl , X ;this noves from source
; data buffer
; into the carry bit.

* Time to nove the data into the destination buffer

[dx DestCntr ;like the SrcCntr, this
; pointer contains the
; address of the destination
; byte.
rol , X ;move data fromcarry into
; destination byte.

* Here's where we determine if we've shifted enough data bits:

inc DestCntr ; proceed to next
; destination byte
dbnz Bi t Count er, | nner Loop

;branch if we've not noved
; eight bits in eight of
; the destination bytes.

* |f we've made it here, then we've noved an eight bit chunk of the
* source buffer. These next few |lines of code determni ne the actua

* value of the pointer into the source buffer. It also contains

* the test for conpletion of novenent into the destination buffer

inc SrcCntr ; updat e count er

| da SrcCntr ;get counter in ACCA
cnp #Sr cBuf r Top+8 ; test

bne Set UpDest Pntr ;branch if we haven't

; moved everything.

DONE nop ; done !!
bra DONE

R I I R I R I R I S I I I I O I R I I R I I I O R R I S I R I O

* Vector Setup

ORG $FFFE
DW START ; set up reset vector

LR R R R R R R R R R S I R I O I I R R I I I R I

AN1221/D MOTOROLA
31

MOTOROLA AN1221/D
32

	INTRODUCTION
	BACKGROUND
	MODEL FOR A DATA TRANSMISSION SYSTEM
	Problems with Data Transmission Systems
	Types of Noise
	One-way Data Transmission
	Two-way Data Transmission

	HAMMING ENCODING
	HAMENC1 — HAMMING ENCODER #1, TABLE LOOK-UP
	HAMENC2 — HAMMING ENCODER #2, MATRIX CALCULATION

	HAMMING DECODING
	ERROR DETECTION AND CORRECTION OF RECEIVED CODEWORD

	TIME DIVERSITY PACK AND UNPACK
	SOME LIMITATIONS OF HAMMING PERFORMANCE
	HOW TO IMPROVE HAMMING PERFORMANCE
	TDPACK — TIME DIVERSITY PACK AND UNPACK

	APPENDIX A HAMENC1 FLOWCHART AND CODE LISTING
	APPENDIX B HAMENC2 FLOWCHART AND CODE LISTING
	APPENDIX C HAMDEC FLOWCHART AND CODE LISTING
	APPENDIX D TDPACK FLOWCHART AND CODE LISTING

