Automatic generation of a web course on electronics with associated documentation

Manuel Alfonseca, Juan de Lara

Dept. Ingeniería Informática, Universidad Autónoma de Madrid

Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

E-Mail: {Manuel.Alfonseca, Juan.Lara}@ii.uam.es

Acknowledgment: This paper has been sponsored by the Spanish Interdepartmental Commission of Science and Technology (CICYT), project numbers TEL97-0306 and TEL1999-0181

KEYWORDS

Web-based simulation, Continuous simulation, Course generation, Electronics, Automatic documentation.
ABSTRACT

This paper presents the procedures and tools that we are using to generate fully automatically web courses based on simulations. This is accomplished by means of an object oriented simulation language (OOCSMP) that allows us to include information about the appearance of the HTML page where the simulation(s) model is going to be included. The compiler for this language (C-OOL) can generate the documentation for the models, in form of HTML pages, using information of the symbol table and special comments included in the model. The paper also presents the construction of a basic course on electronics, as a validation of the presented procedures and tools.

INTRODUCTION
In previous publications, we have presented several educational courses for the WWW developed using elder versions of our simulation tools (Alfonseca et al 1999). Those courses are composed of HTML pages and simulation applets, both generated by our compiler. In most of the cases, the HTML pages had to be completed by hand with text, images, links, etc.

The language we are using is an extension of the old CSMP (Continuous System Modelling Program) language, sponsored by IBM (IBM 1972). We call the new language OOCSMP (Alfonseca et al. 1997), for its main difference with CSMP is the addition of object-oriented constructs which make it much easier the simulation of complex systems based on the mutual interaction of many similar agents (which can be modelled as collections of objects). We have used this language to build a course on Newton’s gravitation and the solar system (Alfonseca et al. 1998a), a course on ecosystems (Alfonseca et al. 1998b), and a course on Partial Diferential Equations (de Lara et al. 1999). Capabilities to handle multimedia elements and discrete events have also added to the language.

In this paper we are presenting some OOCSMP extensions to manage the appearance of the HTML page where the simulation model will be placed. In this way there is no need to complete by hand the resulting course pages. Our compiler C-OOL has also the ability to generate automatically documentation for the models in the form of HTML pages. This is accomplished by using the information in the symbol table, and with the assistance of several special comments.

We also explain the procedures we follow to generate the courses (from the design of the simulation model, to the publishing in the web). Finally, these procedures are shown by developing a course on electronics.
THE COMPILER

The compiler we are using to generate the courses is called C-OOL (a Compiler for the OOCSMP Language) and its working scheme is shown in figure 1.

Using the standard components of the OOCMSP library, the user can construct his model. If the user is planning to construct a web course, the model can include OOCSMP instructions to arrange the appearance of the HTML page where it will be included. A single page can have several simulation applets.

When the OOCSMP program is compiled (with the Java and HTML options enabled), C-OOL generates the HTML pages and the Java applets for the models. There is also the possibility to produce an HTML documentation for the models. This topic will be covered in the next section.
Figure 1 : Our compiler C-OOL.

AUTOMATIC DOCUMENTATION

As we mentioned before, the compiler can take advantage of the information held in the symbol table. Using this information, it has knowledge about the classes declared, the methods, parameters and types they have; the objects and their types; the procedures declared, etc.

An HTML file is generated for the main model, and a page for every class named in the model. The type of a parameter, or an object is linked to the corresponding class file documentation. A new entry in the symbol table had to be added to the compiler, to hold the name of the HTML file, and the location inside the file where the class documentation is located.

We have also added several special comments, to provide the compiler with aditional information. For example, we have comments to indicate the model author, the e-mail address (a “mailto:” HTML tag is created), an abstract of the model behaviour, the date when it was programmed, the title of the model, etc. All the comments can be included in the main model, and inside the definition of any class. Besides, we have other comments to control the visual aspect of the documentation (bars, links, tables, images with associated explanations, etc). Finally, HTML native code can be included inside the OOCSMP model, by means of the HTML instruction.

Listing 1 shows an example of the documentation of an OOCSMP component model. The component is a PAL (Programmable Array Logic) that will be used in the electronics course. There are several novelties in the listing syntax with regard to previous OOCSMP versions :

· The possibility of indicating icons by default, i.e. if no other icon name is specified in the object constructor, all the objects of type PAL4H1, will have the pal4H1.gif file as the graphical representation.

· [image: image1.png]The possibility of generating implicit loops, by means of the special array indexes ROW and COL. If one of these indexes appears in an expresion, a loop is generated from 0 until some of the index expressions reaches the corresponding vector or matrix size.

· It is possible to obtain a matrix row or a matrix column by leaving the corresponding index blank.
* TITLE 4 input PAL

* ABSTRACT 4 input PAL, with one

** output (High), the output (OUT)

** is the OR of all the PAL outputs.

* AUTHOR Juan de Lara

* DATE 1/1/1999

* EMAIL Juan.Lara@ii.uam.es

CLASS PAL4H8

{

 NAME palName

 DATA MAT[8;8], P[8], AUX[8],

OUTV[8]

 ICON icName := “pal4H8.gif”

 DYNAMIC INP[]

 * Load the input and their

 **negations in vector P

 P[ROW*2] := INP[ROW]

 P[ROW*2+1] := NOT(P[ROW*2])

 * Calculate the AND of P and

 ** each ROW, store in OUTV

 OUTV[ROW] := AND(MAT[ROW;],P)

 * Calculate the OR of all the

 ** components of vector OUTV

 OUT := IOR(OUTV)

 }
Listing 1: Documenting a 4-input PAL (file pal4H8.csm).

AUTOMATIC GENERATION OF COURSES

We have developed a procedure to generate generic web courses based on simulation. The steps of the procedure are the following :

[1] Design the course on paper.

[2] Build the necessary simulation models.

[3] Adapt the model to the course page.

[4] Decide which outputs form we will use to view the results. Several output forms can be included in a single simulation problem.

[5] Include multimedia elements. A new feature of the language is the possibility of syncronizing multimedia elements (video, audio, images, text) with the simulation execution.

[6] Add the OOCSMP instructions to control the HTML appearance. Several of these instructions are the same that the documentation ones, but outside the comment structure (without the ‘*’). Besides, we have others instructions, such as the ones to add descriptive text, and one for including previously compilated models. This last instruction is useful when several simulations have to be placed in the same page. In all these instructions, the compiler translates appropriately special spanish symbols, such as tilded vowels, the ‘ñ’ letter, etc. Line breaks can also be included (equal to the ‘C’ symbol ‘\n’).

The next section shows an example of the use of this procedure.

EXAMPLE: A COURSE ON ELECTRONICS

In this section, we will follow the steps of the previous procedure to build automatically a course on electronics, that shows how to build complex electronic systems incrementally by combining simpler circuits.

The simpler circuits are encapsulated as OOCSMP classes (like the one in listing 1), which are reused in the complex circuits. It would also be possible to connect the electronic circuits with other components, but this is not shown in the course.

We can use the OOCSMP directive CONNECTIONPLOT to produce a graphical representation appropriate for electronic circuits. Each block in the model appears as a graphical image with its inputs and outputs correctly connected, and special widgets for the global input/output of the model. The user can change the inputs to the circuit by clicking on the widgets, watch the outputs and display the values of the intermediate blocks by clicking on them. It is also possible to visualize the output as a seven segment led. A special button is created by the compiler to execute the simulation step by step.

[image: image2.wmf]D

C

B

A

ABCD

CD

B

A

D

C

B

A

D

BC

A

D

C

B

A

D

C

B

A

D

C

AB

)

D

,

C

,

B

,

A

(

f

+

+

+

+

+

+

+

=

The first step is to design the course on paper. It will be divided into three main sections : combinatorial circuits (Floyd 1997), sequential circuits (Lewin 1983) and applications.

The first section (combinatorial circuits) includes :

· Adders (1 and 4 bits).

· Four bit multipliers, constructed with the 4-bits adders .

· Multiplexers (2x1 and 4x1).

· Decoders (2x4, 4x16 tree-decoders, coincident-decoders and a decoder whose output is a seven segment led).

· A 4x4 PAL (like the one in listing 1).

The second section (secuencial circuits) includes:

· A page with a D-type flip-flop.

· Three pages showing the working of a register with overflow. In the first page, the user can load and shift the register left and right. In the second one, the student can rotate left and right the register, and in the third one can perform arithmetic shifts (left and right).

· A page with a 4 bit counter.

The application section includes :

· A page with a system mixing digital and analog behaviour : a water tank which receives regulable input flow and pours through an output tap. The tank has ten sensors placed uniformly along its height. Each sensor indicate whene the water reaches a certain level. A 16x4 priority encoder is conected to the sensors, the encoder output is connected to a decoder designed to output the correct signals to a seven segment led. This led will indicate the water level numerically. Two 4x4 ROM’s conected to a digital/analog converter control the input and output taps (the ROMS hold the suitable opening for each water level).
Most of the pages have been constructed automatically. We will show the construction of the page with the PAL model, and the application page.

THE PAL PAGE

To build the PAL page, the second step is to design the necessary models. The PAL model has been shown in figure 1.

The third step is to adapt the model to the page, in our case, we will make a model that uses the PAL designed in Listing 1. The PAL will be programmed to detect an even number of bits in the input. This is encoded in the MEM matrix. This matrix has a row for each minterm, and two columns for each input (the input and the negation). The function represented is the following expression :

But during the simulation, the student will be able to change the PAL connections.

After validating the model (step four), we have to decide which outputs we will use (step five), as we have mentioned before, we will use just one output with the graphical representation of the circuit in the main panel. The instruction used for the output is also included in listing 2 (the last row).

INCLUDE “circ\PAL4H8.csm”

DATA MEM[8;8] :=1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

DATA INP[4], INP[] := 0 0 0 0

PAL4H8 p4h8(“P4H8”, MEM)

p4h8.STEP(INP)

TIMER delta:=1, FINTIM:=20

CONNECTIONPLOT [C]

Listing 2: Model for the PAL page (file pal1.csm).

Figure 3 shows the applet appearance. It has been compiled with the appropriate compiler options to generate a connection graphic and a button to execute step by step. Clicking the input prompts a dialog box, that is used to change the array values. The student can also click on the ‘P4H8’ button to change the PAL programming (MAT matrix).

The sixth step (including multimedia elements) is not applicable to this example.

The last step is to complete the model with text explanations, figures and tables. A scheme of the necessary code is shown in Listing 3.

TITLE PAL : Programmable Array Logic

DESCRIPTION In its basic form, the PAL is a PLD (Programmable Logic Device)

DESCRIPTION composed of a fixed AND matrix -but programmable once- and a

DESCRIPTION fixed OR block. The basic scheme of a PAL is shown in next figure.

IMAGE [C], “PAL.jpg”, “Basic scheme of a PAL”

...

MODEL [500;500], [C], “pal1.csm”

LINK “mult.htm”,”Multiplexers”

LINK “dec.htm”,”Decoders“

LINK “2adder.htm”,”Adders”

...

LINK [C], “docpal1.html”,”model documentation”

Listing 3: Scheme of the PAL page.

Figure 3 : The PAL applet.

THE APPLICATION PAGE
For the application page, we need :

· A tank model, that will be modeled as a class, with analog behaviour. During simulation, the user will be able to change the rate of incoming water, the pouring rate, the radius and the height of the tank. This model will also include the sensors.

· A 16x4 priority encoder taken from the OOCSMP library. The 10 lowest inputs of this encoder will be connected to the sensors. It will output a binary number with the water level.

· A 7-segments-led-decoder, also taken from the OOCSMP library. This component takes the binary number with the water level and outputs the correct signals for the seven segment led.

· A 7-segments led generated by adding a parameter to the CONNECTIONPLOT instruction.

· Two ROMS, the first to control the input tap, the second to control the output tap. They both hold which opening is the most suitable for each water level.

· A 4-bit binary-decimal converter that takes a 4-bit binary number and converts it into a decimal number.

The second step for this page is to design the tank model. The OOCSMP code for the tank is shown in Listing 4.

DATA PI := 3.141592654

CLASS TANK

{

 NAME tName

 DATA RAD, H, INFLOW, OUTFLOW,

 SENSOR[10]:= 0 0 0 0 0 0 0 0 0 0

 ICON icName := "tank.gif"

[image: image3.png] DYNAMIC

 VOLUME:= PI*RAD*RAD*H

 ENTER := LIMIT (0, VOLUME, (INFLOW-OUTFLOW)*0.001/(PI*R*R))

 LEVEL := INTGRL(0,ENTER)

 SENSOR[ROW] := INSW ((ROW+1)*H/11.0-LEVEL , 1, 0)

 SETINPUT A

 INFLOW := A

 SETOUTPUT B

 OUTFLOW := B

}
Listing 4: The tank model (file tank.csm).

The third step is to connect it with the other components from the library. The model is shown graphically in figure 5.

[image: image4.png]
Figure 5 : The application model
The fourth step is to test it. Then it is necessary to decide which outputs we will use (fifth step). For this problem, we will use a graphical representation of the system components (CONNECTIONPLOT instruction), and a two dimensional graphic with the water level value (PLOT instruction). The sixth step (including multimedia elements) is not applicable to this example. Finally, we have to complete the model with text explanations, images, links to other pages etc. The resulting resulting page can be found in :

http://www.ii.uam.es/~jlara/investigacion/ecomm/applicat.html
We have taken advantage of the models used for the present course to construct a library of electronic components. At the present moment this library is composed of about 50 components (including also encoders, demultiplexers, priority decoders, comparers, parity checkers, BCD to binary converters, etc) besides the basic gates.

Finally, this course, and others, are accesible from :
http://www.ii.uam.es/~jlara/investigacion

CONCLUSIONS AND FUTURE WORK

We have presented several procedures and tools that simplify the generation of web courses based on simulation. These tools also automatically document the simulation models.

We want to improve the graphical representation of equations, to be able to switch between different design levels (component circuits, connection of components, etc). In the future we are planning to include some control of the student activities, by means of the access to a data base, or by means of task control mechanisms. We are also thinking in construct a graphical environment to design the OOCSMP models, planing the different course pages, and synchronizing the multimedia elements. We are also planning to increase the multimedia capabilities of the language, with virtual reality panels, animation panels, etc. This environment would turn OOCSMP and C-OOL into an author tool for building simulation-based courses. We are also extending the OOCSMP component library, and planning also to extend the language with more elaborated ways of expressing the discrete behaviour of the system, such as event classes, handlers, queues, etc.

REFERENCES

Alfonseca, M.; Pulido, E.; de Lara, J.; and Orosco, R. 1997. ”OOCSMP: An Object-Oriented Simulation Language”.In Proceedings ESS’97. SCS Int, pp.44-48.

Alfonseca, M; de Lara, J.; and Pulido, E. 1998. “Semiautomatic Generation of Educational Courses in the Internet by Means of an Object-Oriented Continous Simulation Language”. In Proceedings ESM’98. SCS Int, pp. 547-551.

Alfonseca, M; de Lara, J.; and Pulido, E. 1998. “Educational Simulation of Complex Ecosystems in the World-Wide Web”. In Proceedings ESS’98. SCS Int, pp. 248-252.

Alfonseca, M., de Lara, J., Pulido, E. 1999. "Semiautomatic Generation of Web Courses by Means of an Object-Oriented Simulation Language", special issue of SIMULATION, Web-Based Simulation, Vol 73, num. 1, July, pp. 5-12.

Aviation Industry CBT Committee Computer Managed Instruction. 1997. Computer Managed Instruction Guidelines and Recommendations, AGR 006, Version 1.1, AICC. http://www.aicc.org/agr006.htm.

de Lara, J., Alfonseca, M. 1999. "Simulating Partial Differential equations in the World-Wide Web" Proceedings EUROMEDIA'99. SCS Int. pp.45-52.

Directorate-General XIII. 1996. Educational Multimedia: first elements of reflection. Task force on Multimedia Educational software.

Floyd, T.H., “Digital fundamentals”, 6th edition, Simon & Schuster International Group.

GNA The Globewide Network Academy. 1997. http://gnacademy.org.

IBM Corp. 1972. Continuous System Modelling Program III (CSMP III) and Graphic Feature (CSMP III Graphic Feature) General Information Manual. IBM Canada, Ontario, GH19-7000

Lewin, H. 1983. “Logic Design and computer organization”, Addison-Wesley.

Schutte. 1997. Virtual Teaching in Higher Education: The New Intellectual Superhighway or Just Another Traffic Jam?.

http://www.csum.edu/sociology/virexp.htm
Thomson Publishing. 1997. Internet Distance Education with Visual C++.

http://www.thomson.com/microsoft/visual-c/teacher.h

� INCRUSTAR PaintShopPro ���

� INCRUSTAR Equation.3 ���

� INCRUSTAR PaintShopPro ���

[image: image5.png][image: image6.wmf]D

C

B

A

ABCD

CD

B

A

D

C

B

A

D

BC

A

D

C

B

A

D

C

B

A

D

C

AB

)

D

,

C

,

B

,

A

(

f

+

+

+

+

+

+

+

=

[image: image7.png]_1013460792.unknown

_1983263065

_1005650320

