Output visualization modes in a Java generating Continuous Simulation Compiler

Manuel Alfonseca, Juan de Lara

Dept. Ingeniería Informática, Universidad Autónoma de Madrid

Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

E-Mail: {Manuel.Alfonseca, Juan.Lara}@ii.uam.es

KEYWORDS

Web visualization, Java code generation, continuous simulation, partial differential equations.

ABSTRACT

This paper describes the automatic generation of Simulation Java applets, by means of an object oriented simulation language (called OOCSMP), and a compiler for this language (called COOL). Several graphical outputs are available in this language. The compiler also generates a fully configurable user interface that allows the user to interact and experiment with the problem, and HTML skeletons invoking the applets.

INTRODUCTION

The currently most successful hypermedia system is the World Wide Web (WWW), which has many advantages on traditional hypertext applications. This has brought around the current proliferation of educational courses in the WWW (Thomson 1997;GNA 1997), which run from a simple transposition of lecture notes, to pages including more sophisticated elements, such as animated graphics, simulations and so forth.

Visualization of the simulation data in an appropiate and flexible way has to be a basic feature for a simulation tool. The user should be able to view the data in different graphical formats without too much effort.

We have been working for some time on the developement of advanced simulation tools, that simplify the generation of educational courses on the WWW. The language we are using is an extension of the old CSMP (Continuous System Modelling Program) language, sponsored by IBM (IBM 1972). We call the new language OOCSMP (Alfonseca et al. 1997;de Lara et al. 1998), for its main difference with CSMP is the addition of object-oriented constructs which make it much easier the simulation of complex systems based on the mutual interaction of many similar agents (which can be modelled as collections of objects).

We are presenting here some new graphical features of the language, that make the generated Java user interface much more complete and flexible, making it possible to mix different graphical outputs in the same applet.

OOCSMP GRAPHICAL CAPABILITIES

The user interface generated is divided in several parts :

· A canvas with a maximum capacity of 9 different graphical representations. The canvas is a 3x3 grid, but if not all the pigeonholes are filled, the grid automatically becomes as compact as possible.

· At most 3 scroll-like objects to adjust the simulation final time, the time step and the current time.

· Several buttons to view/modify the values of the variables of the simulation objects, and the global variables.

· At most 9 additional windows with different graphical representations.

Two different threads are created: one for the simulation loop computations, another for the graphical interface. Some of the graphical forms also create their own thread. Figure 1 shows the basic organization of the generated user interface.

The canvas is divided into 9 parts. Each graphical output takes the location of one of these parts (NW,N,NE,W,C,E,SW,S,SE) as the first parameter, or WINDOW if the output has to appear on a sepparate window. The types of graphical outputs available in OOCSMP are the following:

[image: image1.png]
Figure 1 : The scheme of a typical user interface.

· Two-dimensional plots, used to represent one dimensional functions. This graphic may be animated. If so, an icon may be assigned to each dependent variable. The name of the icon file may be specified in the ICON attribute of the object being plotted, or directly in the PLOT sentence.

· Two-dimensional plots for vectors (PLOT2D).

· Three-dimensional plots for matrices (PLOT3D). This output form creates its own thread, and allows rotating the surface (by clicking on the rotate button), scaling the surface (shift+mouse-click+mouse-move), displacing the surface (Ctrl+mouse-click+mouse-move), and changing the visualization angle (mouse-click+mouse-move).

· Iconic plots (ICONICPLOT), represent by means of icons the variation with time of several variables. The number of visible icons in the same class is proportional to the value of the variable they represent. This output creates its own thread.

· Graphical representations of equations (CONNECTIONPLOT). A graphical block appears for each OOCSMP block. This is also an input form, because it is possible to change the value of the input variables.

· A plot of the grid used to solve a partial differential equation.

· Map of isosurfaces to show the solution of a partial differential equation.

· Listings of variable values.

All these ouputs accept as first parameter the position where they have to be placed. The three first types may have an associated scale panel, which allows viewing and changing the scale of the plot. The first output form may also have an associated legend panel, with information about the colours of the variables being plotted. Both associated panels can be placed on the 3x3 main panel, or as separate windows.

The next examples demonstrate the use of all the graphical outputs.

Using the ICONICPLOT and the PLOT sentence

Suppose we want to simulate an ecological system (Alfonseca et al. 1998a). Once the model is programmed, we have to decide the graphical outputs for the Java applet. For this problem, it could be convenient to show two graphics: a 2D plot to show the evolution of the populations of the different species of the ecosystem, and an iconic plot showing this same information in a more visual way.

Suppose too that we want to show only a few of the trophic chains at the same time. This can be done in OOCSMP by means of the ‘\’ sentence. After this sentence, new PLOT sentences can be added. The new plots replace those in the specified location. The ‘\’ sentence also generates a button to change between the different graphical representations.

In the example in figure 2, the ‘\’ sentences create three additional buttons, one to show the main simulation, the other two to show food chains 2 and 3. The scale and the legend windows have been suppressed by means of compiler options. The buttons to change the species parameters have also been suppresed.

This applet can be found at : http://www.ii.uam.es/~epulido/ecology/eco6.htm

TITLE Savanna

CLASS Species

{ ICON icname

 * behaviour of a generic specie

 ... }

* Definition of all the species

Species Lion(“Lion”,”lion002.gif”,...)

...

Species EcoSystem := Lion,...

* An array containing all the species

DYNAMIC * The main simulation loop

...

PLOT
 [C],Lion.X, ..., TIME

ICONICPLOT [S],Lion.X,...

\

TITLE Chain 2

PLOT [C], Lion.X, Giraffe.X, ..., TIME

\

TITLE Chain 3

PLOT [C], Cheetah.X, ..., TIME

Listing 1 : A scheme of a OOCSMP model for an ecosystem.

[image: image2.png]
Figure 2: The generated applet for the ecosystem.

Using the CONNECTIONPLOT sentence

Suppose we want to simulate the behaviour of an electronic circuit (Alfonseca et al. 1998b). We want the circuit to be displayed, and when we change the inputs, we want to see the intermediate gate values, and the outputs. This can be accomplished by means of the CONNECTIONPLOT sentence. Listing 2 shows the model of a 1-bit adder. The resulting applet is shown in figure 3, and can be found at: http://www.ii.uam.es/~epulido/circ/mult.htm

[image: image3.wmf]r

cA

dT

dt

d

dx

kA

dT

dx

Aq

-

æ

è

ç

ö

ø

÷

-

=

0

Figure 3: The applet for the electric circuit.

TITLE 1-bit adder

DATA A:=0, B:=0, C:=0

DYNAMIC

xor1 := EOR (A,B)

and1 := AND (A,B)

and2 := AND (xor1, C)

CARRY:= IOR (and1, and2)

OUT := EOR (xor1, C)

TIMER delta:=1, FINTIM:=1, PLdelta:=1

CONNECTIONPLOT [C]
Listing 2 : A model for a 1-bit adder.

Using the three dimensional PLOT and PLOT with vectors

Suppose we want to simulate the heating of a bar (de Lara and Alfonseca 1999). The equation governing this phenomenon is the transient heat equation (Reddy 1993), which is :

[image: image4.wmf]dU

dt

dU

dxx

dU

dxy

dU

dyy

+

+

+

=

0

Where (is the density, c is the specific heat of the material, A is the cross-sectional area of the material, T is the temperature, k is the thermal conductivity of the material, t is time, and q is the heat energy generated per unit of volume.

We could use a plot for vectors to view the temperature at every time interval. The vector will be plotted at time intervals of PLdelta.

It is possible to show a three dimensional plot, with the following axes: the dimension of the bar (X axis), the time (Y axis), and the temperature (Z axis).

Let q be a function of time. We could visualize this function in a two dimensional plot, and also obtain other information, for example, the total heat in the bar. We are going to put this last plot in a different form, because the scales of q(t) and the total heat could be quite different.

Finally, we want to put a listing of the total heat along time in a sepparate window. This can be done by means of the PRINT command.

The next listing shows an scheme of the OOCSMP code necessary to solve this problem. Figure 4 shows the result.

TITLE Heat 1D

DATA K:=4.0

DOMAIN bar1d:=BAR(0.0,4.0,

INITIAL(0.0),

ESSENTIAL(EDGE(1),10.0))

MESH Res := ISOPARAMETRIC(bar1d, LINE2, ELEMENTS(40))

PDE H1d(0,0,1,1,-K,0,0,0,0,0,0,0,0,0,

 -SIN(TIME*3.1415/FINTIM)*(TIME+2.0),

 EXPLICIT, TScheme(FORWARD))

Res.setPDE(H1d)

Res.STEP()

AUX := SIN(TIME*3.1415/FINTIM)* (TIME+2.0)

SUMA:= +Res.VALUE()

TIMER delta:=0.0005, FINTIM:= 0.04, PLdelta:=0.001, PRdelta:=0.02

PLOT3D [C], Res

PLOT2D [E], Res

PLOT [S], SUMA, TIME

PLOT [SE],AUX, TIME

PRINT [WINDOW], Res

Listing 3 : Solving the Heat equation on a bar.

[image: image5.png]
Figure 4 : Solving the Heat equation in 1D.
Plotting grids and maps of isosurfaces.

Suppose we want to solve the two dimensional equation :

[image: image6.png]
The exact solution of this equation is given by : e2tsin(x+y)cosh(x+y).

We could use two maps of isosurfaces: one for the calculated solution, another for the exact solution. We will also generate a plot of the grid nodes, with the initial conditions. The initial and the four boundary conditions are chosen to be the exact solution.

The next is a listing of the OOCSMP code to solve the previous problem. Figure 5 shows the result.

DATA exacta[75;75]

DOMAIN qd := QUADRILATERAL(

-1, -1, 1, -1, 1, 1, -1, 1,

 INITIAL(SIN(X+Y)*CH(x+Y)),

 ESSENTIAL(EDGE(1:4),

 EXP(2.0*TIME)*SIN(x+y)*CH(x+y)))

MESH m := ISOPARAMETRIC(qd, QUADRILAT4, ELEMENTS(75,75))

PDE pde1 (0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, DUFORTE)

m.setPDE(pde1)

DYNAMIC

exacta[ROW;COL] := EXP(2.0*TIME)*

SIN((-1+COL*0.027)+(-1+ROW*0.027))*

CH((-1+COL*0.027)+(-1+ROW*0.027))

m.STEP()

TIMER FINTIM:=1.0, delta:=0.05,

 PLdelta:=0.1

ISOPLOT [C], m

ISOPLOT [S], 1, 1, -1, -1, exacta

GRIDPLOT [E], m

Listing 4 : Plotting grids and maps of isosurfaces.
[image: image7.png]
Figure 5 : Plotting grids and maps of isosurfaces.

Conclusions and future work

The set of tools we have developed makes it very easy to build Web courses containing Java applets. The OOCSMP language is much simpler to use than Java in this area of application. Some courses we have developed can be found at :

http://www.ii.uam.es/~jlara/investigacion

The variety of graphical outputs supported by our compiler allows a great flexibility when presenting simulation data. To vary the form of the graphical output, most of the OOCSMP program is left untouched, only the plot commands have to be modified.

The user interface generated allows the user to interact with the problem and change the simulation parameters at run time.

In the future, we are planning to add a graphical mesh generator that will produce OOCSMP code for the domains and the grid. It will be possible to include this code in the OOCSMP models by means of the INCLUDE clause, as well as import/export other mesh formats. Besides, it will be possible to put this generator inside the simulation, and change graphically the domains and the mesh at run time. We are also considering to build a graphical environment for the development of OOCSMP programs.

Finally, we are begining to work with distributed objects. Given an OOCSMP model, our compiler will optionally generate stand-alone code, or distributed code. This will speed-up some simulations considerably.

References

Alfonseca, M.; Pulido, E.; de Lara, J.; and Orosco, R. 1997.”OOCSMP: An Object-Oriented Simulation Language”. In Proceedings 9th European Simulation Symposium ESS97. SCS Int. Erlangen, 44-48.

Alfonseca, M., de Lara, J. and Pulido, E. October 1998. "Educational simulation of complex ecosystems in the World-Wide Web", Proceedings ESS’98, Nottingham, pp. 248-252.

Alfonseca, M., de Lara, J. and Pulido, E. 1998. "Generación semiautomática de cursos de Electrónica para Internet mediante un lenguaje de simulación continua orientado a objetos”. III Congreso de Tecnologías Aplicadas a la Enseñanza de la Electrónica (TAEE'98), Madrid, pp. 125-130.

de Lara, J., Alfonseca, M. And Pulido, E. "An object-oriented continuous simulation language and its use for training purposes" Proceedings SESP'98. 5th International Workshop on Simulation for European Space Programmes. November 98. Noordwijk, pp. 49-54.

de Lara, J., Alfonseca, M. “Simulating Partial Differential Equations in the World-Wide-Web”. Proceedings EUROMEDIA’99. Munich, pp. 45-52

GNA The Globewide Network Academy. 1997. http://gnacademy.org.

IBM Corp. 1972. Continuous System Modelling Program III (CSMP III) and Graphic Feature (CSMP III Graphic Feature) General Information Manual. IBM Canada, Ontario, GH19-7000.
Reddy, J.N, “An introduction to the Finite Element Method”, 2nd edition.McGraw-Hill, 1993.

Thomson Publishing. 1997. Internet Distance Education with Visual C++. http://www.thomson.com/microsoft/visual-c/teacher.h

ACKNOWLEDGMENT
This paper has been sponsored by the Spanish Interdepartmental Commission of Science and Technology (CICYT), project number TIC-96-0723-C02-01.

SHORT BIOGRAPHY OF THE AUTHORS

Manuel Alfonseca is a Doctor in Electronics Engineering and Computer Scientist. He is Subdirector of Research in the High School of Computer Science at the Universidad Autonoma of Madrid. He worked at the IBM Madrid Scientific Center, where he reached the level of Senior Technical Staff Member. He has published about 150 technical papers and several books on computer language translation, simulation, fractals, graphics, databases, artificial intelligence, object-oriented technology and theoretical computer science. He also writes science for the layman (six books and over 60 papers in a major Spanish daily journal) and juvenile literature (17 published books).

Juan de Lara is a Technical Engineer in Computer Science, graduating in 1994 with a Top of Class Award. In 1996 he became a Higher Engineer in Computer Science. He is a Doctoral Student at the Universidad Autonoma of Madrid and is working on his doctoral thesis on Continuous Simulation. He has also worked for Cap-Gemini Spain from 1996 through 1997.

� INCRUSTAR PBrush ���

� INCRUSTAR PaintShopPro ���

� INCRUSTAR Equation.2 ���

� INCRUSTAR Equation.2 ���

� INCRUSTAR PBrush ���

[image: image8.png][image: image9.wmf]r

cA

dT

dt

d

dx

kA

dT

dx

Aq

-

æ

è

ç

ö

ø

÷

-

=

0

[image: image10.png][image: image11.png][image: image12.wmf]dU

dt

dU

dxx

dU

dxy

dU

dyy

+

+

+

=

0

_983439231.unknown

_983553450.unknown

_988544640

_983474163

_983085841

